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STRESS ANALYSIS OF CRACKS

by
P. Paris & G, Sih

Abstract : ;7¢ ff

A general survey of the results of elastic stress analyses
of cracked bodies is the basic obJective of this work., The
stress-intensity-factor method of representing results is
stressed and compared with other similar methods, All three modes
of crack surface displacements are considered, as well as
specialized results applicable to plate and shell bending,
Results for various media (e.g. anisotropic, viscoelastic or
non-homogeneous) are contrasted with the analysis of homogeneous
isotropic media. The accuracy of the representation of the crack
tip stress fields by stress-intensity-factor methods 1is discussed
pointing out some limitations of applicability., Methods of
estimating and approximate analysis for stress-intensity-factors

in complicated practical circumstances are also discussed,
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STRESS ANALYSIS OF CRACKS

by Paul C, Paris#¥
and George C.M. Sih¥

Introduction:

The redistribution of stresses in bodies caused by the
introduction of a crack is one of the essential features which
should be incorporated into an analysis of strength of structures
with flaws, Moreover, the high elevation of stresses near the
tip of a crack should receive the utmost attention, since it is
at that point that additional growth of the crack takes place,

As a consequence, it is the purpose of this paper to present a
summary of current knowledge of crack tip stress fields and of

the means of determination of the intensity of those fields,

Small amounts of plasticity and other non-linear effects
may be viewed as taking place well within the crack tip stress
field and hence may be neglected in this presentation of the
gross features of those fields, It 1is the subject of other
discussions to assess the effects caused by the fields; e.g.
the plasticity within them and other requirements of formulation

of a complete theory of fracture behavior,

¥ Associate Professor of Mechanics, Lehigh University,
Bethlehem, Pennsylvania



In his now famous paper Griffith [1] made use of the
"stress solution provided by Inglis [2] for a flat plate under
uniform tension with an elliptical hole which could be
degenerated into a crack, However, neither Griffith nor his
predecessors had the knowledge of stress fields near cracks
which is now available, so as a consequence, he devised an
energy-rate analysis of equilibrium of cracks in brittle
materials, Sneddon [3] was the first to give stress field
expansions for crack tips for two individual examples, however,
it was only later that Irwin [4,5] and Williams [6] recognized
the general applicability of these field equations and extended
them to the most general case for an isotropic elastic body [5].

It 1s this analysis to which initial attention shall be given,

Crack Tip Stress Fields for Isotropic Elastic Bodiles

The surface of a crack, since they are stress free
boundaries of the body near the crack tip, are the dominating
influence on the distributions of stresses in that vieinity.
Other remote boundaries and loading forces effect only the

intensity of the local stress fileld.

The stress fields near crack tips can be divided into
three basic types each associated with a local mode of
deformation as 1llustrated in figure 1. The opening mode, I,
is associated with local displacement in which the crack
surfaces move directly apart (symmetric with respect to the

x-y and x-z planes), The edge sliding mode, II, is characterized
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by displacements in which the crack surfaces slide over one
another perpendicular to the leading edge of the crack
(symmetric with respect to the x-y plane and skew-symmetric
with respect to the x-z plane), Mode III, tearing, finds the
crack surfaces sliding with respect to one another parallel
to the leading edge (skew-symmetric with respect to the x-y
and x-z planes)., The superposition of these three modes is
sufficient to describe the most general case of crack tip

deformation and stress fields,

The most direct approach to determination of the stress
and displacement fields associated with each mode follows in
the manner of Irwin [4,7], based on the method of Westergaard
[8]. Modes I and II can be analyzed as plane extensional-
problems of the theory of elasticity which are subdivided as
symmetric and skew-symmetric, respectively, with respect to the
crack plane, Mode III can be regarded as the pure shear (or
torsion) problem., Refering to figure 2 for notation, the
resulting stress and displacement fields are (a full derivation

is found in Appendix I):
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-Mode III
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The equations (1) and (2) have been written for the case of
plane strain (i.e.w=0) but can be changed to plane stress
easily by taking 0, = 0 and replacing the shear modulus, G,

and Poisson's ratio,v, in the displacements with appropriate
values., These equations, (1), (2) and (3), have been obtained
by neglecting higher order terms in r, Hence, they can be
regarded as a good approximation in the region where r 1is
small compared to other planar (x-y plane) dimensions of a body

such as crack length and exact in the limit as r approaches

zero,



The parameters, KI' Krrs @nd Kyr1 in the equations are
'stress-intensity-factors* for the corresponding three types of
stress and displacement fields. It is important to notice that
the stress-intensity-factors are not dependent on the
coordinates, r and 8, hence they control the intensity of the
stress fields but not the distribution for each mode., From
dimensional considerations of equations (1), (2), and (3), it
can be observed that the stress-intensity-factors must contain
the magnitude of loading forces linearly for linear-elastic
bodies and must also depend upon the configuration of the body
including the crack size. Consequently, stress-intensity-
factors may be physically interpreted as parameters which
reflect the redistribution of stress in a body due to the
introduction of a crack, and in particular they indicate the
type (mode) and mangitude of force transmission through the

crack tip region,

Elementary Dimensional Considerations for Determination of

Stress-Intensity-Factors

An infinite plate subjected to uniform tensile stress,o,
into which a transverse crack of length, 2a, has been
introduced, is shown in figure 3, As a two dimensional problem
of theory of elasticity only two characteristic dimensions are
present, ¢ and a, Moreover, this configuration is symmétric

with respect to the crack plane therefore only the first mode

* these stress-intensity-factors differ by a factor of = with
earlier definitions of them,
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fields are present, Then, simply from dimensional consideration

[9] with equations (1), the only possibility is:

Ky = C, gja
I 1 (j 4)

Kip = Kgrp = 0

Hence, observations of symmetry and dimensional analysis can aid

in determination of stress intensity factors. Though C, 1is

1
undetermined by such considerations, later results will show 1t
to be J?} However, even 1f C, 1is left undetermined the fracture
size effect can be predicted for this configuration, since¥* as

K + Kig ,‘then
o{a' = const, (5)

By similar considerations of the plane extensional
problem of a plate under shear, as shown in figure 4, the stress

intensity factors are

KII = T V;Q

1 " K= 0 (6)

=
]

¥ K; > Ky, » as a fracture criterion, 1s discussed in many
other papers at this conference,
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Moreover, analogous results may be obtained for the
problem shown in figure 5, 1,e, an infinity body with shear

applied parallel to a tunnel crack of width, 2a., They are:

=
]
-

IIT Ta (7)

K K =0

I IT

Though these are relatively interesting examples, more
complicated configurations are of practical importance,

consequently, more powerful methods of analysls will be cited,

Stress-intensity-factors can be determined from the
limiting values of elastic stress concentration factors [7]
as the root radius, p, of the notch approaches zero, Consider
a symmtrically loaded notch whereupon the tip will be embedded
within a mode I stress field. The maximum stress, % will occur
directly ahead of the notch. Again dimensional considerations of

equations (1) lead to

Kt = C; Uo\Jp (8)
in the limlting case the notch approaches a crack, as p>0, or

1lim {?

K. = == 0 (9)

The constant has been evaluated from equation (4) and the

stress concentration solution for an elliptical hole in the



configuration shown in figure 3, which is:

a
0o = o(1+2 \l.:) (10)
p

A multitude of stress concentration solutions available in the
works of Neuber [10], Peterson [11], Savin [12], Isida [13] and
others can be used to determine stress intensity factors for
many conflgurations., Formulas corresponding to equation (9) can
be as easlily derived for modes II and III. They appear in
Appendix II,

From the above dimensional considerations it is evident
that the appearence of the l/J;\type of singularity in the
stress field equations (1), (2) and (3) is a controlling
feature in fracture size effects, the relationship of stress
concentrations to stress intensity factors, and, as will be
noted later, extension of fracture mechanics concepts to other

than isotropic-elastic media.

Stress-Intensity-Factors from Westergaard Stress Functions

Several sources [4,5,7,8 and others] give Westergaard
stress functions, Z, for crack problems, A discussion of the
basic equations analysis of plane problems with this type of

stress function is given in Appendix I,
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For each of the three modes of crack tip stress fields the
Westergaard stress function in the neighborhood of the crack tip

takes the form

£(3) ie
Z=——= ,8=re (11)

=

where f(§) must be well behaved in that vicinity in order to

ensure stress free crack surfaces*, Hence in the region close
to the crack tip, i.e. |§| +0, it is permissible to represent

the stress function as [5]:

£(0)
Z = (12)
NEERE |
for mode I stress flelds (see Appendix I). Comparing oy along

the x-axis as computed from equation (12) and as given in

equation (1) leads to:

lim 2182

Ky = I (13)
|8]~0
In a similar fashion for the other modes:
1lim 218 7
Kpp = II (14)
|€]+0
1im \)2nfz
Il (15)

K =
IIT |f|¢0

¥ Simple poles away from the crack tip will appear at locations
of concentrated forces, etc.
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As an example consider a plate with an infinite periodic
array of cracks along a line with uniform tension, ¢o; the half
period is b and the half crack 1ength a, as shown in figure 6.

The stress function for this configuration is [4]:

Tz
o Sin 1)
Z - -
I TZ Ta
[(sin ==)2 - (sin -—)211/2 (16)
2b 2b

In order to move the crack tip to the origin substitute
z = x+iy = a+¥ and trigonometric identities, and eliminating terms
of the order of € compared to terms of the order of a, the

limiting process in equation (13) leads to:

2b na '

K; = 0\ " | — tan — (17)
Ta 2b

Kyp=K111=0

Refering to figure 6, the indicated axes of symmetry are lines
devoid of shear stress, and subtracting a uniform normal stress,
o, in the horizontal direction (leads to no change in K;)

leaves only small self ecullibrating normal stresses, o, , along
these lines provided a is small compared to b, For these
reasons 1t 1s regarded as permissible to cut the sheet along
these lines and to use equation (17) as an approximate solution

for finite width strips with central cracks provided a is less
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than b/2. Results computed for strips by Isida [13] and
Kobayashi [14,15], which are accurate to much larger relative
values of a,indicate that this practice is sound (within 7%,

see table I),

Similarly, cutting the problem in figure 6 along the
y-axis and similar lines leads to an approximate solution,
equation (17), for double edge notched strips which 1s acceptably
accurate if a is greater than b/2 (within 2%). Bowie [16] has
calculated results for edge notched strips which verify this

accuracy.

The configuration shown in figure 6 with the applied stress,

0, replaced by in plane shear stress,T, leads to:

T sin i
11 = 7 = Z-1/2 (18)
[(sin %%) - (sin g%) ]
making use of equation (14) results in:
2b Ta'
K = 1[\ha\ -_— fan e (19)
I Ta 2b
Ky = Kgp = O

In a like fashion all results such as equations (16) and (17)

for symmetric problems, mode I, are analogous to the corresponding
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mode II problem equations (18) and (19) obtained by rotation
"of boundary forces and/or stresses through 90° in plane when

treating extension of infinite plates, and certaln other cases,

Moreover, the corresponding mode III problem, with the
stress, o, replaced by out of plane shear, 1, for a body of
infinite extent in all directions, the stress function 1s

identical to equation (18) and the stress-intensity-factor 1is:

2b ra |
K = T\ITra w—— tan —
111 Ta 2b

(Ky = K = 0)

(20)

It can be noted that the above examples of stress-
intensity-factors from Westergaard stress functions, equations
(17), (19) and (20), lead to the results in earlier examples,

equations (4), (6) and (7), if b becomes very large compared to a.

Westergaard stress functions are available for many
problems and with some experience 1t 1is easy to add solutions,
but there are limitations to the scope of the method. The most
serious drawback is that the method is normally restricted to
infinite plane (two-dimensional) bodies with cracks along a
single straight line. Another, more versatile approach to plane

problems is available,
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Stress-Intensity-Factors from General Complex Stress Functions

A complex stress function approach developed by
Muskhelishvili [17] and others has some advantages over the
Westergaard method by treating a broader class of plane

extensional problems,

An Airy's stress function,¢, must satisfy the boundary
conditions of a problem and the biharmonic equation, i.e.

(see Appendix I)
vhe = 0 (21)

The general solution to equation (21) may be expressed as

[17]
¢ = Re [2Z¢(2) + x(2z)] (22)

From this form for ¢ the sum of the normal stresses becomes

op + oy = 4 Re[¢'(2)] (23)

Defining a complex stress-intensity-factor [18] by

K = KI -1 KII (24)

equations (1), (2), and (24) may be combined to give the
same stress combination in the vicinity of a crack tip. The

result is

2! (25)
o, + oy = Re[vzzﬂK]
LN
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for a crack tip at z. and for corresponding coordinate

1

directions, i.e.

S=32 - 2 (26)

Substitution of equation (26) into (25) and comparing the

result with equation (23) leads to

K = KI-i KII =2 \2r

\’z—zl ¢'(Z) (27)

1im
z>2,
The function ¢(z) has been determined for a large number of

crack problems [12, 17, 18, 19, 20], since with this technique

conformal mapping of holes into cracks is permitted,

For a mapping function, z = W(n), equation (27) becomes

1lim —

K =2\2n Jywin) - w(n,) (28)
n-n
1

The mapping of a crack of length, 2a, into a circular hole of
unit radius 1is given by
1

a
win) == (n+ =) (29)
2 n

N
]

For this mapping equation (28) simplifies to

T
K = 2j:1 ¢' (1) (30)
a

The example of a single concentrated force, F, (per unit

thickness) on a crack surface with arbitrary inclination, as
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shown in figure 7, is solved by:

F a 1l n 1 1
' (n) = 75 (- =+ (=) [(n+=)=(n_+7)]
2nl[a2-b2] n no="n n ©

(31)

1l K
+ (no—;:)[;:: logn -log(no-n)ig

Where n, corresponces toz="Db, F =

= P-1Q, and « is an elastic
constant, which for plane strain is x = 3-lv ,

Using equation (30) with (31), the stress-intensity-
factors are:

P a+b 1/2 Q k=1
K, = (=2 4 (—)
2 \Jyra a-=b 2 \}‘na x+1l
(32)
-P k=1 Q a+b
K__= )1/2

( ) + (
Il 2\’1ra. k+1l 2\[1ra a=b

The concentrated force solution, equations (32) provides
the Green's functions to solve any single straight crack
problem in an infinite plane from a knowledge of the stresses
on the prospective crack surface with the crack absent, i.e,

Uy(x,o) and Txy(x,o)° The solution is
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a a+x 1/2
[ o (x,0) (™) ax
y a-x

1

=

1l a at+x 172 33
KII:\J‘E? / Txy(¥,0) (=—=)  dx

-a a=-Xx

In order to further lllustrate the versatility of the
complex stress function method, the problem of a crack of
radius R, subtending an arc of angle, 2o , symmetrically with
respect to the x-axis in an infinite sheet subjected to

uniform biaxial tension may be treated, see figure 8. For this

case Muskhelishvili [17] gives

O\I-R-\ Z - CO5 @ a

2
br(z) = + sin = - (38
2(1+s1n2i) [1-2 cos a+ 22]1/2 2
2

Relocation of a crack tip on the x-axis, as required by equation

(27), may be accomplished by the substitution:

ia A
z = ie , (z =i-sin o cosa) - (35)

whereupon equations (27), (34) and (35) give

an R sin o(l+cosa)'
(1+4sin® =) 2
2
oyr R sin @(l-cosa) '
= o
II  (1+sin? =) 2
2
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Other notable examples of stress-intensity-factors for rather
complicated cases of plane extension have been provided [18,
21, 22, 23, etc,] using this and similar methods. The power of
this method for plane extension has been sufficiently
illustrated, consequently, additional examples will be removed

to Appendix II,

A similar complex variable approach has been developed to
determine stress-intensity-factors in prismatic bars (with
prismatic cracks) subjected to torsion and flexure [24, 25, 26].
This type of configuration leads to mode III stress-intensity-

factors, some of which will also be tabulated in Appendix II.

Stress-Intensity-Factors for some Three-Dimension Cases

Using a method employing Fourier transforms, Sneddon [3]
treated the case of a circular disk crack of radius, a, in an
infinite solid subjected to uniform tension, ¢, normal to the
crack plane, see figure 9, His results for crack tip stress

field expansions lead to:

'l | (37)

(by symmetry KII =Kyqp =0

The analysis of stresses near ellipsoidal cavites 1in infinite
bodies subjected to tension has been discussed by Sadowsky

[27] and Green [28], However, difficulties arise in the
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stresses computed from their results near the crack edge when
‘ the ellipsoid is degenerated Into a crack, see figure 10,
Subsequently, Irwin [29] calculated the stress-intensity-
factor at any location on the crack border, described by the
angle,B, by comparing Green's results for displacements with

equations (1), The formulas obtained are:

. 1/4
Q'\ha' a?
K_ = (sin2g +=—— cos?p ) (38)
I %0 b2

(by symmetry Krr = Kyr1 = 0)

where ¢1is the elliptic integral¥®

n/2 b2-a® !
%= [ 1-( ) sin® 6 de (39)
o b2

Notice that for b = = ,8 = n/2 equations (38) and (39) reduce to
equation (4) or for b = a to equation (37), with corresponding

changes from figure 10 to figure 3 or figure 9.

Though the above results for three dimensional problems
are of extreme practical interest, the mathematical difficulty
in attempting other such solutions 1s so great that a discussion

of the possible methods would be of 1ittle interest,

¥ values of elliptic integrals are to be found in many
mathematical tables.

- 20 -



However; in practical application of results it must be kept
'in mind that all bodies are really three dimensional and often
the cracks which must be analyzed do not suilt the idealized
results exactly as presented here, Nevertheless, the results
which are presented form the basis for sensible judgements
from which three dimensional effects may be assessed, A later
section on "Estimation of Stress Intensity Factors" will

illustrate some use of that judgement,

Moreover; as a prime example of the fact that three
dimensional effects are always present and yet may most often be
Justifiably neglected, consider sheet of finite thickness with
a through-crack, If the sheet were infinitely thick plane
strain would apply, or if infinitely thin then plane stress,

But with finite thickness a mixed situation of plane stress near
the surfaces of the plate and plane strain in the interior
occurs in the crack tip stress field. Consequently, the stress
intensity factors computed for plane problems represent only
their values averaged through the thickness. Therefore,
considering that plane stress vs, -plane strain displacement
fields differ by a factor of (1-v2), the actual values of

stress intensity factors for a straight-through-crack can vary
by (1- v2?) (or less) from the surface to the interior. The

values at the surface being a maximum of 5% less than computed

- 21 =



values énd correspondingly a maximum of 3% more in the interior
(for v = 0,3). Though crack tip plasticity further complicates
the situation, it 1s partially for this reason that the crack
often begins to grow in the interior of a plate rather that

at the surface to form a "tongue". Even though this effect is
often observed, ignoring it leads to a desirable level of
accuracy of computed values of stress-intensity-factors in

developing fracture criteria¥,

Edge Cracks in Semli-Infinite Bodies

The plane extensional problem of an edge notch, a, into a
semi-infinite plane subjected to tension,o, has been discussed
by several authors [30, 31, 32, 16, etc.], see figure 11, Upon
dimensional analysis leading again to equations (4) with Cq
left unknown, the task 1s merely to evaluate that constant,
However, formitable methods must be employed to obtain the effect
of the free surface of the half-plane, These methods use
series-type mapping functions with the complex variable stress
function method [16, 30] and/or dual integral equations
resulting from a Green's function approach [31, 32]. The results

may be computed to any desired degree of accuracy and (within

¥ So call "pop-in" tests actually make direct use of this effect.
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1% of each other) they are:

K. = 1,120 \va’
I
(40)

(Ker = K

II = 0)

IIT

Comparison of this result with either equation (4) or (17)
leads to the conclusion that the free surface correction factor

is 1,12 for edge notches perpendicular to uniform tension,

On the other hand for the analogous mode III case
equation (7) and figure 5 with the introduction of a free
surface perpendicular to the crack plane along the centerline
of the crack, no correction is required [33, 26]. Therefore

corresponding to figure 12 the stress intensity factor is:

= T
K 11 Jma
(41)

K_ =K =0
( I II )

There is no directly analogous mode II case corresponding to

figures 11 or 12,

With these examples and their results the methods of
determination of "closed form" stress-intensity-factors for
some basic configurations have been illustrated. Subsequently,
some other types of problems which have not lent themselves to

closed form solutions bear discussion,
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. Two=Dimensional Problems of Plate Strips with Transverse Cracks

The class of two dimensional problems of plate strips with
transverse internal, edge, and dual collinear edge cracks
subjected to tension and in plane bending is of great
practical interest for fracture testing procedures. However,
closed form solutions for such problems are not available and
many of the approximate solutions in the literature are of
doubtful accuracy., Therefore it 1s lmportant to not only cite

these results but to give estimates of their accuracy.,

The limitations on use of the so called "tangent" formula,
equation (17), for centrally cracked strips and double edge
notched strips subjected to tension were already discussed.

The work cited [13, 14, 15, and 16] which evaluated those

limitations was from direct attacks on the strip problems,

One of the most formidable approaches to this class of
problems is found in the work of Isida, [13, 34, 35, 36, etc.]l.
Isida has extensively developed mapping functions for strip
problems for determination of stress-concentrations at the
tips of round ended cracks of end radius, p. His results are
presented in the form [see 13]

ZG\I?
T

£(1) (42)
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where X 1s the ratio of crack length to strip width. The
. function f(A) is obtained as a power series as a result of
using power serlies mapping and stress functions, The form of
equation (42) lends itself to direct substitution into
equation (9) or élternately to techniques developed by
Kobayashi [14]., The resulting stress-intensity factors can be
computed to any degree of accuracy by Isida's methods, provided
the power series employed in the analysis converge which they
do for relatively large variations in A, Within this minor

limitation Isida's results lead to accuracies of within 1 or 2%,

Isida has computed results in the form of equation (42)
for a variety of problems [13] of special interest in fracture
testing such as the case of the centrally notched strip in
tension, as shown in figure 13, Upon substitution of equation
(42) into equation (9), it can be noted by comparing the result
with equation (17) that f(A) corresponds to the exact correction

factor for the stress intensity factor of a finite width strip

2b ma'
whose approximate form is|== tan ==, Table 1 compares the two
Ta 2b

to illustrate the accuracy of equation (17).
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Table I

—
2b T3,
J?E tan " f(a)
a
A== (Equation 17) (Isida [13])
0.0T74 1.00 1.00
0.207 1,02 1.03
0,275 1,03 1.05
0.337 1,05 1,09
0.410 1,08 1.13
0,466 1.11 1,18
0,535 1.15 1,25
0.592 1.20 1,33

Bueckner [37, 38] has developed integral equation procedures and
solved many crack problems., He obtained the solution to a strip
with a single edge notch subjected to bending, see figure 14,
which is conveniently reported in [39]. The results so

reported obviously lack the correction factor for a free surface,
for small crack sizes discussed in conjunction equation (40),
which is a 12% error, However, as noted following equation (17),
the effect of the crack's emination from a free edge disappears
with deepening cracks consequently the error should diminish,

The results are expressed as follows:

6M
K. = gl& (43)
(h-a)3’/? (3)

I

(Kpp = Kppp = 0)

a
where g(H) is given in table II,
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Table IT

a/h 0,05 0,1 0,2 0.3 0.4 0.5 0.6 (and larger)

g(a/h) 0,36 0,49 0.60 0,66 0.69 0.72 0.73

The values in Table II suit the limiting case of deep
notches as determined from Neuber's results [10]., Therefore 1t
might be presumed that Table II reports values with errors of
far less than 12% for a/h greater than 0.2, However, several
recent papers on notch bending analysis disagree widely with
the values in Table II and though these recent results claim
agreement with "compliance calibrations" for a/h in the normal
testing range, they do not agree with results for either of the
limiting cases, shallow or deep notches. Consequently, the
matter of accuracy of the notched bending analysis 1s left

unresolved at this time,

Bowle developed polynomial mapping functions for use with
the complex stress function technique to solve plane problems,
such as cracks eminating from circular holes [40] and the double
edge notched strip in tension [16]. The latter example, as
1llustrated in figure 15, provides an indlcation of the validity
of employing equation (17) for this configuration, Comparing

Bowile's results with equation (17) is most lucidly accomplished
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-using a correction factor h(a/b) on equation (17) or

b ra'
K =v\|-na‘ — tan — h(a/b) (uLn)
1 Ta 2b
(Kpp = Kppp = 0)

for which his computed values are given in Table III¥,

Table III
2b Ta
h(a/b) h(a/b) J-— tan ===h(a/b)
| L L wa 2b L
a/b (5- = 1,00) (b = 3,00) (g+°°)
0.1 1,13 1,12 1,12
0,2 1.13 1,11 1,12
0,3 1,14 1,09 1,13
0.4 1,16 1,06 1,14
0.5 1,14 1,02 1,15
0.6 1,10 1,01 1,22
0.7 1,02 1,00 1.34
‘ 0,8 1,01 1,00 1,57
0.9 1,00 1,00 2,09

From Table III it can be immediately observed that for

low a/b values the correction factor of 1,12 for a crack from

a free surface, as illustrated by equation (40), is present,

¥ The last column in Table III agrees within 1% with a similar
formula proposed by G, R. Irwin on the basis of estimating the
various effects, It is

2b Ta wa) 1/2
K. =g JwaT——(tan — 4+ 0,1 sin =)]
I Ta 2b b
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As a/b increases its effect disappears and equation (17) applies
'as noted previously. The last column of Table III combines the
two effects, i.e, the free surface and the finite width strip,
to give the complete correction factor (within 1%) for all values
of a/b. From this study it can be noticed that using equation
(40) for a/b <€ 0,5 and equation (17) for a/b > 0.5 results in
errors of less than 3% for the configuration shown in figure 15
provided L/b > 3. As a consequence 1t has been i1llustrated that
basic solutions like equations (17) and (40) can often be used
with proper judgement to provide approximate analyses of more

difficult situationslike figure 15,

Collocation procedures for strips of finite length have
been developed by Kobayashi [15] and Gross [L41], As an example
of the method Kobayashi treated the strip configuration in figure
13 using the general complex stress functions of Muskhelishvili
[17], collocating equally space points on the sides and ends of
the strip, He observed agreement within about 5% of Isida's

results as given in Table I,

Gross treated the single edge notched strip using William's
[6] eigenfunction representation of the Airy stress function., The
configuration is shown in figure 16, He found that collocation
at 20 or more boundéry points was required to obtain

convergence, His results can be stated in the form:
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KI = g Jam' k(%)

(45)
Kirr = Kpp = 0
a _
where k(§) is given as a correction factor for this strip
problem in Table IV,
Table IV
g.g tan w;‘-
Ta 1)
a/b k(a/b) *h(a/b) k(a/b)
(Gross [41]) (Bowie [161])
(from Table III
and equation (44)5

0,10 1,14 1,12 1.14
0,20 1,19 1,12 1,15
0,30 1,29 1.13 1,18
0,40 1.37 1,14 1,22
0.50 1.50 1.15 1,31
0,60 1,66 1,22 1,46
0,70 1.87 1.34 1.67
0,80 2,12 1.57 1.95
0,90 2,44 2.09 2,25
1,00 2,82 - 2,58

By comparison of Gross's results (figure 16) with Bowie's double
edge notch results (figure 15), columns 2 and 3 of Table IV,

the apparently large influence of bending due to the lack of
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symmetr& in the single edge notch case is observed., Gross's
results reportedly agree with experimentally measured values
(i.e, compliance measurements) within a few percent for
0,40¢a/b<1,00, However, new results by Bowie [16] shown in
column 4 leave the matter of accuracy in doubt for this

configuration,

Following the procedures of Kobayashl and Gross, it 1s a
straight forward matter to solve additional problems, Moreover,
similar numerical procedures based on collocation of boundary
conditions in the mean, using other representations of the Alry
stress function, and/or energy methods are available for

development,

Reinforced Plane Sheets

Many conventional structures are fabricated from plane
sheets (plates) with reinforcing stiffeners or doubler plates
attached by riveting, welding and other means. Often the
attachments are designed as crack arrestors in order to

provide so called "fail safe" structures.

In order to analyze some of these configurations it is
appropriate to determine stress-intensity-factors for cracks in
sheets with stiffeners perpendicular to the cracks, Romualdl

[42, 43)] and Paris [44, 45] provided some early solutions to

- 31 -



estimaté the effect of rivet forces tending to hold a crack
lclosedo Sanders [U46] discussed the problem of action of an
integral stiffener crossing the center of a cracks. Isida
[13, 47] extended his methods to give results for centrally
cracked strips with integrally reinforced edges and to infinite
sheets with a periodic array of cracks along a line with
interspersed integral stiffeners, Greif [U48] has solved the
problem of a single crack and an integral stiffener (passing
outside the crack) in an infinite sheet, and in a continuation
of that work the riveted stiffener has been treated [U9],
Moreover, Terry [50] has analyzed some similar riveted and
welded stiffener problems, as an extension of work by

Erdogan [21]., Cracks within one sheet of a riveted doubler
plated area of a structure were treated by Paris [447], Many
of the results of these analyses will be tabulated in Appendix
ITI. Since, this class of problems is difficult to formulate,
the methods employed are rather obtuse and specialized,
Consequently, they will not be described here other than to
remark that the most general approaches available are those of

Isida [13], Greif [48] and Terry [50].

Thermal Stresses

It has been shown that the crack tip stress field

equations for isotropic bodies, equations (1), (2) and (3) also
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. provide the proper field equations for thermal stress states
[51], (with the unlikely exception of the crack tip as a point
source of heat). Therefore the concept of stress intensity

factors 1s in general applicable to thermal stress problems,

As an example consider the case of uniform heat flow in
a sheet,; with an undisturbed temperature gradient, AT, at an
angle B with respect to a crack of length, 2a, acting as an
insulator, as shown in figure 17, Florence and Goodier [52]
have provided the complex stress function for this configuration.
It is:

iEaa2AT

¢(n) = sin B8 log n (46)
as a consequence of similarity of the resulting crack tip stress
field equation with ordinary (isothermal) plane extension,
equations (29) and (30) may be applied to equation (46) which
results in:

Eaa3/%AT

4

KII sin 8
(47)

(Kp = Ky1p = 0)
where a is the coefficient of thermal expansion and E is
Young®s modulus. Other examples, [51], will be cited in

Appendix II,
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Stress Intensity Factors for the Bending of Plates and Shells

The field equations for the stresses near a sharp notch in

a plate subjected to bending was first considered by Williams

[53, 54] who later applied like methods to a more detailed

discussion of cracks [55].

Using the classical;, Kirchhoff

theory of plate bending he obtained the following stress fileld

equations,; see figure 18:

re
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where the constants in Williams' analysis [55] have been
modified in order to define [18, 56] the plate bending and

plate shearing stress-intensity-factors, K, and KS, in a

B
manner consistant with (but not quite corresponding to) the
first and second mode types, KI and KII° respectively, as
defined by equations (1) and (2), Though polar instead of
rectangular stress components are given for compactness in
equations (48), the similarity of these results with
equations (1) and (2) is immediately apparent. This

similarity is further clarified upon computing K_ and KS for

B
some configurations and loadings of interest,

The governing equation for free bending of plates (no

transverse loads) by the Kirchhoff theory is:
V4% = 0 (49)

where w is the transverse displacement, Consequently, an
analysis [18] ensues of an identical nature to equations (21)
through (27) which gives:

K 41K =- {27 h(3+v) 1lim Jz-zl'¢'B(z)

(1-v2) 2%z,

where ¢B(z) is the plate bending stress function discussed

extensively by Savin [12],
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Furthermore, mapping is again permitted or as equation
(30) followed from (27), for the mapping function given by

equation (29), equation (50) becomes

r E h(3+v) o (1) (51)
K, = 1 Kq & == ! 1 51
B S a (1-v2) B

For the example of an infinite plate subjected to uniform
moment , Mo’ all around the boundary, and with a crack of length,

2a, as in figure 19, Savin [12] gives the stress function,

M, a(l-v) (1-v) 1
4g(n) = = [n b — - (52)
E h3 (3+y) N

Using equation (51) and (52) the result is:

6 M,
KB = J Ta (53)

he

(KS

0)

Since the stress in the surface layer of the plate, 00, away

from the crack is

oo = 2 (54)

the analogy between equations (53) and (4) is evident,
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Moreover, Erdogan [56] has shown experimentally that in
brittle materials (like plexiglass) the fracture mechanics
concept of KB reaching a critical value KBC is appropriate
and analogous to the extensional first mode case, 1i.e. KIc°
Incidentally, Erdogan [57] also shows that the critical value
of stress intensity factors applies to the extension second
mode, i.e., KIIcD which again is shown to be analogous to the
shear case of bending, i.e, Kse.. Consequently, the plate

bending and shearing stress intensity factors as defined in

equations (48) are of some immediate practical interest,

However, equations (1), (2) and (3) were proported to
give all tip stress fields for elastic bodies and yet the
field for plate bending as predicted by equations (48) are not
identical to them. This is because the classical Kirchhoff
theory of bending is an approximate theory which does not take
into account the details of the stress distribution near
boundaries or discontinuities in the plate, The crack tip and
crack surface boundaries are locations where details are not

clear,

Subsequently, Knowles [58] pointed out that using Reissner's
[59] more accurate plate theory leads to a correction of

equations (48) which on the surface of the plate makes them
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. 1dentical to equations (1) and (2) except for a constant factor,
Moreover, the character and role of KB and Kq are preserved
through this correction° Hence, it 1is concluded that they are
directly proportional to (completely analogous to) their counter-
parts KI and KII where elastic action is concerned., Willlams
[60] pointed this out in reference to the experiments by

Erdogan [56], This correspondence has also been observed for

fatigue crack growth [61],

Therefore, both theoretical and experimental results for

fracture tests have led to:

(3+v)

K (55)

(1+v)

on the surface of the plate., The sensibility of use the
Kirchhoff theory to compute KB values 1is also clear when it is
reasoned that the values of stress intensity factors reflect
the intensity of general transmission of applied loads into the
crack tip region, The general properties of gross load
transmission are unaffected by the boundary layer of about one
plate thickness; h, in which the Reissner theory applies,
Consequently, equation (55) is always correct for converting

Kirchhoff theory stress intensity factors, K to the Reissner

BD
theory result; K;, for a given configuration.
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Several solutions for KB and KS are now avallable [18]
and others can be obtained in a direct fashion using equations
(50) or its equivalent for other types of stress functions,

Some of the avallable results will be tabulated in Appendix II,

The case of general bending and extension of thin shells
with cracks has been shown by Sih [62] to give crack tip stress
fields equivalent to combining modes I and II with the bending
fields, i.e, equations (1) and (2) and equation (48), Modes I
and II result from extension of the middle surface of the shell
and the bending fields result from changes in the curvature of
the middle surface, Consequently, the stress intensity factor

concept is also of general applicability to shells,

However, computing the values of the stress intensity
factors for particular configurations in shells is very

difficult,

Moreover, it may be observed [62] that the extension and
bending effects in shells will be coupled, so that the stress
intensity factors resulting from solutions must reflect this
coupling. As a consequence of the coupling, formulas for
stress intensity factors will involve many parameters (coupling

terms) so that they will, to say the least, be complicated.,

Folias [63, 64] and Ang [65], noting the similarity of

equations for plates on elastic foundations and shallow
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spherical shells [66], have attempted some problems in these
areas, However, no other attempts at the complete solutions

to shell problems are known,

On the other hand some parametric studies of possible
shell effects on cracks in cylinders have been attempted in
several articles [67, 68, 69, 70], The results indicate that
the experimental data on failure of cracked shells can in fact
be correlated in terms of elastic shell parameters, Hence, it
is hopeful that further progress can be made soon toward

quantitative prediction of shell effects on an analytical basis,

The problem of crack arrestor rings on shells is at least
another degree more difficult. Nevertheless, since this problem
is of prime interest in tear resistant design, efforts are
being made toward empirical methods of design [69, T1].

The complete analytical solution to such a problem is as yet

improbable,

Couple Stress Problems with Cracks

Another area analogous to shell problems through having
similar governing equations is that of couple stresses [72, 73],
The formulation of couple stress problems takes into account
the gradients of stresses in terms of couples on infinitesimal
elements in order to account for the effects of lattice

curvature in crystals, etc., Setzer [74] has shown that for
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'extension of cracked plates due to uniform applied stress away
from the crack, no modification in the field equations (1), or
the stress intensity factors, for example equation (4), is
required, However, where the applied stresses away from the
crack possess gradlents, the values of stress intensity factors

will be modified by factors of the form
[1+a, & +a, &2+, &3+ .,...156)
1 a 2 "a 3 'a

where § is a couple stress (lattice) parameter or characteristic
length of the material, The A; are of the order of unity or
smaller and 4 is of the order of lattice dimensions, consequently
these results would be of a greatest interest 1in analyzing fine
cracks in crystals, except for the fact that the methods
involved are similar to and may be carried over to the analysis

of shells,

Estimation of Stress Intensity Factors for Some Cases of

Practical Interest

Armed with the principles of linear elastic theory,
such as "the principle of superposition", etc. and with an
intuitive grasp of a "strength of materials" approach, 1t
is possible to form estimates of stress intensity factors,

This was made partially evident in the case of an embedded
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elliptiéal crack in the discussion of limiting cases following
.equation (38) and (39). Other situations where limiting cases
of different problems are comparable were illustrated in Table
ITI and IV and examples in the text, Notice especilally, as in
these tables, that one problem solution often forms an upper

or lower bound on the solution of others, These concepts will

be employed in examples of estimating to follow.

Consider the configuration of a notched round bar with an
outside diameter, D, and notched section diameter, d, and
subjected extension causing a net sectlon stress, 0, ,.¢. See
figure 20, From dimensional considerations and symmetry, it is
noted that the stress intensity factor may be stated in the
form,

K. = o JﬂD‘ F(4d/D)
I~ Tnet (57)

Kir=K111=0

where F(d/D) is an unknown dimensionless function of the
diameter ratio., The end values (i,e. d/D+0 or 1.,0) of the

function can be established by examining limiting cases,
As D»» dimensional analysis leads to

K1 = C3 ohet \ T4 (58)
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thus, for small values of 4/D,

o!
Fu(d/D) = C3 ‘5 (59)
1
the value of C3 is found to be 5¢§ using equation (9) and the

stress concentration solution for the problem given by Neuber
[10] and Peterson [11]., Since the free surface introduced by
the finite dlameter of the bar lowers the stress intensity
factor, Fu(d/D) is an upper bound on F(4d/D) for all values of
d/D,

On the other hand for d/D+1 Bowie's solution for the
double edge notched sheet, equation (44), simulates the

problem upon substituting

D d
a =3 (l-D)
a d
57175
and (60)
0 = 0o ¢ (2 2
ne D

The result conforms with equation (57), i.e.

_ d\2 [ 1 T, dy d
KI = 0 et J;51[(B) J tan 5(1-5) h(l—s)] (61)

-
L
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consequently,

d 1 d' d
FL(%) = (5)2\}-"- tan ;-(1—5) h(l--D-) (62)

o!
where h( ) is as tabulated in Table III. This function FL(E)
is a lower bound on F(4/D) for all values of d/D, since the
curvature of the bar causes increased crack tip stress over the

flat plate solution as 4/D recedes from the value 1.

Finally from Peterson's [1ll] stress concentration values
and equation (9), and other considerations, the maximum value
of F(d/D) 1s estimated to be 0.240. Interpolating between these

solutions results in the estimation values in Table V.

Table V

d/D F; (d/D) F,(a/D) F(d/D)

0 0 0 0]
0.1 - 0,111 0,111
0.2 0,046 0,158 0,155
0,3 - 0,194 0.185
0.4 0,118 0,223 0,209
0.5 - 0.250 0,227
0.6 0,185 0,274 0,238
0,65 0,203 - 0,240
0,70 0,217 0,296 0,240
0075 00226 - 00237
0,80 0,230 0,317 0,233
0,85 0,224 - 0,225
0,90 0,205 0.336 0,205
0.95 0,162 - 0,162
0.97 0,130 - 0,130
1,00 0 0.353 0
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By making use of careful judgement of the limits of
applicability of the limiting cases, equations (59) and (62)
and the analysis of stress concentration [11], the accuracy

of F(d/D) in Table V can be stated with confidence, From d/D
of O to O.4, 1t is *3%; from 4/D of 0.4 to 0.85, it is =25%;
and from d4/D of 0,85 to 1.0, it is #2%, Therefore, a solution
with sufficient precision for practical applications has been

constructed,

This configuration i1s often used for fracture testing

and a simplified formula is employed, i.e. [75],

KI = 0,233 onet\’ﬂD (63)

This formula seems most reasonable since 0,233 agrees with the
values of F(d/D) in Table V within 5% over the range of 4/D
from 0,48 to 0,86, Further improvements in the accuracy of
the values given would require a full analysis of the problem,

such as suggested by Sneddon [76] or Bueckner [77].

Another configuration, which has been discussed by Irwin
[29], is that of a semi-elliptical surface crack in a plate,
see figure 21, This configuration 1s both typical of flaws
and is used in fracture testing (simulating this type of flaw),
If the plate 1s subjected to general uniform extension by

stresses,o, o' and 1} the stress, o', parallel to the crack
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causes no singularity or no contribution to stress intensity

factors, Consequently o' will be ignored,

If b/a 1s large and a/t small compared to one, the stress
Intensity factors at the end of the semi-minor axis, a, can be
estimated from equations (17) and (20), making use of free-
edge corrections as in equations (40) and (41)., Then, the
correction ¢ in equations (38) and (39) should be applied as
b/a values are reduced toward one, However, the free edge
correction probably diminishes as b/a approaches one and the
tangent correction in equations (17) and (20) is also an
overcorrection in that limit. On the other hand equations (44)
and (45) and Table IV show that single edge notches induce
bending which increases the stress intensity factor, but less
so0 in this case since the uncracked portion of the plate would
inhibit bending. Finally, Table I shows the underestimation of
the tangent correction as a/t becomes larger, Taking all these
factors into account, equations (17), (20), (38), (39), (40),
(41), (42), (44) and (45), and their considerations lead to

the approximations:

Kir =0 (64)




"for the stress intensity factors at the end of the semi-minor
axis, a, For the ranges of b/a from one to ten or more and of
a/t from zero to one-half the accuracy is within about :5%.
Moreover, for b/a up to about five and a/t up to three-fourths
the accuracy i1s still probably better than 210%, considering all
the compensating errors. This case has at least provided a
classic example of estimating methods using many other solutions
for stress intensity factors to treat an important problem which

is all but impossible to solve directly.

A word of warning with complicated cases like equations
(64) is in order. If the crack tip plasticity subtends a major
portion (say one-half) of the distance between the crack front
and the back side of the plaﬁe, use of these equations would
become indeed doubtful., Moreover, estimation of the amount of
plasticity is clearly more complicated here than in other
situations, but surely possible. Such estimates are beyond the
scope of this discussion and the reader is refered to [78].
Moreover, in passing it is note-worthy that restrictions on
crack tip plastic zone sizes are always present in making direct
applications of the elastic analyses [75]. For certain situations
estimated corrections to the analysis for crack tip plasticity

effects have been proposed [44, 75, 78, etc.],

Estimates can be made for stress intensity factors for
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quite aébitrary crack front contours in three-dimensional bodies
subjected to uniform tension,o, perpendicular to the crack plane
in the region including the whole crack., Consider the embedded
crack whose plan view is shown in figure 22, Using the

previous results for circular disk cracks, equation (37), and
for tunnel cracks, equation (4), bounds can be established on

the crack front for various portions of the contour, where

K = Ky oz Ky or K3 or Ky
KII = 0 (65)
Krrr = 0

The value of K1 will be slightly greater than that for a disk
crack of radius, a;, but far less than a tunnel crack of width,

2a;. Therefore from equations (4) and (37),

S offfa) <K, << o {7y (66)

L

Since = is about 0,64, if K

1 is guessed to be
m

K, = 0.75 o \ma, (67)

The result is surely within $10% along the whole portion of

the contour marked, K,, in figure 22, Now, K2 is closer to the
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tunnel crack case or a guess 1s

K, Z0.85 o \ na{ (68)

the neck of width, 2a3, makes K3 slightly higher than the

comparable tunnel crack or

-~

K3 =1,05 ¢ Vwag (69)

and similar to Kl, the guess for Ku is

Ky = 0,75 o ‘Jwau' (70)

These estimates are surely all correct within :10% (and
probably #5%). Moreover, additional refinements are possible,
such as noting that K3 on the upper part of the contour is
likely about 5% less than on the lower contour in figure 22,

due to the curvature of the centerline of the neck, 2a3o

Corrections can also be added for the proximity to a free
surface, such as the tangent correction in equation (17), or
for the emination of the crack from a free surface, such as
equation (40). The method of estimating has now been
sufficiently illustrated to allow direct application to a
multitude of examples., In order to develop confidence in
estimating procedures, it 1s suggested that one may, for

example, estimate the stress intensity factor values for an
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"elliptical crack using the above procedure, equations (66)
through (70), and compare the results with the exact values,

equation (38),

Stress Flelds and Intensity Factors for Homogeneous

Anisotrogic Media

An interest in stress analysis of cracks for various
media, such as anisotropic, visco-elastic, and/or non-
homogeneous materials, stems from two motivations., First, the
effects of slight amounts of directionality, creep and in-
homogenity on the stress distribution and intensity are useful
in assessing the limits of applicabillty of the conceptual model
of fracture mechanics based on linear-elastic theory., 1In
addition studies of the stress analysis of these various types
of media will provide the basis of extension of fracture

mechanics to such materials,

Several authors have treated special cases of crack
problems in anisotropic media, such as orthotropy (32, 79, 80]
or particular configurations [81, 82], However, the general
anisotropic case can be treated in order to determine crack tip
stress fields and to define intensity factors in a manner

completely analogous to equations (1), (2) and (3). The
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methods discussed extensively by Lekhnitzki [83] will be

employed here.¥*

The Hooke's law for a homogeneous (rectilinearly)

anisotropic material is:

€y = a,9 oxtay; oy+al3 ogptajy tyz+a15 Typt216 Txy

ey = ap] oxt oo

€y = a3y ox* oo

Yyz = 2y3 9xF ..

Yxz = a1 Oxt ..o

Yxy = 861 9x*a62 oytagy o tagy Tyztags Txatage Tyy
where from reciprocity a5 = a4y (71)

Referring to figure 2 for the coordinates and notation with
respect to a crack front, the crack tip stress fields may be

resolved from two cases of plane problems which are defined as:

ou ov
(1) Plane strain, i,e, == = == =y = o
92 02z
OF €z = Yyz = Yxz = ©
ow
(2) Pure shear, i,e, u=v = =— = o
0z
OF €5 = €y = €y = T, =0

The superposition of results from these plane problems will

¥ The mé%hematical derivation of stress fields leading to
equations (81) through (85) etc. are not a requirement of
useful interpretation of those results,
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rgyrma -

allow treatment of the general case of crack tip stress fields

similar to equations (1), (2) and (3).

(1) Plane Strain: For this case the Hooke's law may be

reduced, using the restrictions on strain to eliminate the

appearence of z-components of stress, to give:

€y = All ox+A12 °y+Al6 Txy

€y Asq oxtApo oy+A26 Txy (72)

YXy Ag1l oxthAg2 oythAgg Txy

where again Aij = Aji and the Aij can be expressed in terms of
a4 3 directly if desired. Using an Alry stress function,lf,
with stress components defined as the usual second derivatives,
equilibrium is automatically satisfied and the compatability

equations lead to:

DloD2oD3oDL‘ob= 0 (73)
where
9 9
Dy = w== = y, oo
k
3y L

and My are the roots of
A 4 2 A 3+(2 Ay ~+Agg) 2.2 A +Ann = 0 (74)
11 ¥ —<€ A1 ¥ 127R66/¥ =< Asg UTASH

These elastic constants, u, are complex or pure imaginary and

occur in conjugate pairs [83], i.e. ug = 31 and ) = g2°
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. Defining the complex variables 29 and Z5 by

Zl X+uly

(75)

the general solution to equation (73) can be written, if

lll H2

U =Uy(zy) + 713 Up(zy) +

or irf
ul # Ho
U =U,(zy) +U,(2z,) +
1'“1 2\42 (76)
+ Uz +Uy(Ey)

and with the further restriction that U must be real they
become
U= 2 Re[Vy(z1) + Z7Vo(21)]
or

V=2 Re[U;(z1) +Us(z,5)] (77)

The similarity of the first case of equation (77) with
equation (22) is appropriate since for isotropic media,
up = up = 1, Therefore, the orthotropic case with the crack on

a principal plane which leads to u; = up has been reduced to the
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same case as isotropic elasticity with the simple change of
variable 2] =X+ u Y. The more general case of anisotropy,

the second of equations (77) or uy # up will follow in the

remaining discussion.,

The stress and displacement components are found from the
Airy stress function,V, by the usual combination of

derivatives which give:

Q
"

x = 2 Re[ulzCﬂ"(zl) + u22172"(zz)]

Q
]

2 Rel¥"(2)) +7U,"(z2,)]

-
1

xy =2 Refu, U,;"(2,) + u, U,"(z,)]

and
u =2 Re[P1 Ul'(zl) + PZIIZ'(zz)] (78)
v =2 Re[q1 Ul'(Zl) +q2U2'(Zz)]
where
- 2
A
22
Q= A, w4 - Ay
M1

Therefore solution to any specific problem is reduced to

finding the'U1 and'Uz which satisfy the boundary conditions,

Referring again to figure 2 and equations (75), in the

nelghborhood of a crack tip |Z1| and Iz are small compared to

2|
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other pianar dimension of problems., Consequently, the stress
"functions for cracks given by Lekhnitzki [83] may be reduced

to the form,

U"(Z ) = fl(ul’ug’zl)
11 Z
£ (u ,u ,2)
U,"(z) = 2 \j; 2_ 2 (79)
Z
2

where f1 and fz are well behaved in that neighborhood and some
restrictions on their form are imposed by the stress free crack
surface boundary conditions. Imposing these conditions, as
well as those mentioned earlier and the substituting the
variable
ie

Z =X + 1y = re (80)

the crack tlp stress fields are found frdm equations (78), (79)

and (80) and can be stated in the form

g = 18 Re MY, % "o _ "y ]
x L] — j —
2Tr - cos & + siln 8 cos O + sin @
V u1 u2 N\ u2 \[ ul

2
\{2"—" [ {/coso+u sin & fosg+us }__k
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1 M
Ty = 12 Re 1 - ]
J?wr‘ uoH Jcos & + M sin @ \cos 9 + M sin Y

ITa 1 1 1
Re — -
q2nr ul-u véos e +uyu sin @ Jcos 0 u sin 0‘

K U ou 1
Ty = —2 Re|ll_ 2 - +
qur\ ul-uz fcbs o + ul sln & cos &8 + u "sin @'

K -1 "
J2rr o=, (\cos e + M sin &' J—Bs 8 + M sin @

(81)

where higher order terms in r have been neglected, Reiterating,

. and u2 are dimensionless elastic constants, Notice the

striking similarity of equations (81) with equations (1) and (2),
The definitions of KIa and KIIa have been chosen to be

identical to KI and KII for the cases of symmetrical configurations

with symmetric or skew-symmetric loadings, respectively,

Consequently, it can be shown that for the general
anisotropic problem of the configuration illustrated in figure 1
that:

KIa =g \,va (82)

IIa



and for the problem in figure 2,

IIa TANTa

K

KIa =0 (83)

Moreover, for the symmetrical wedge force problem, as shown in
figure 23, the stress functlons are:

i1Pu, 3li-J§2-a2 -1ia

log

2ﬂ(u1-u2) fl +\’f12-azl

+,' 2_ 2! _

%, jz a ia

s h’? 2222' + 1 a
2

2

v, (3)

+
(W
v

b

-1 P u2
'Dz'(S;) e 10 [j

2T(y =u )

1 2

(I, = +a+z) (84)

Upon using equations (78), (79), and (80) with equations (84)

and comparing results with equations (81), it is found that
P

K =
Ia

O?J
m

K =

IIa (85)

equations (85) can also be obtained from the isotropic case,
equations (32) or (33), directly. It i1s therefore easy to

add a multitude of examples by simply constructing stress
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intensity factors from symmetric and skew-symmetric isotropic

counterparts.,

of pure shear, e

(2) Pure Shear:

Attention shall now be turned to the condition

For this case the generalized Hooke's

law, equations (71), may be reduced by the definition of pure

shear to:
1
= ones = +
Yyz oy we Tyz P Rys Txz
ow
Yez = -a-— = Asu Tyz + A55 Teg (86)
X
where Asu = Aus“ Substituting these expressions into the
equilibrium equations, the result is
32w 2w 3w
A e -2 A + A e— =0 (87)
bl 4y2 45 3X 3y 55 ay2
which can be written
D5°D6.W = 0 (88)
where, as previously defined,
] 9
D R e e u —
k 3y k 9x

Comparing equations (87)
of

and (88) us and ue are the roots
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A w2 -2A uwu+aA =0 (89)

it 1s observed that these roots are a conjugate pair, i.e,

M= Fs . Define a complex variable z_ by

Z =x+u ¥y (90)
the general solution to equation (88) may be expressed as
w=WI(z)+W(Z) (91)
1 5 2 5

Since w must be real, for convenience w2 can be taken as the

negative of W1 or
w=21Im [Wl(zs)] (92)

Referring to figure 2 for a description of the coordinates,
in order to satisfy the stress free crack surface conditions

W takes the form,

W =4 \/z (93)
1 5

where A is a real constant in the vicinity of the crack tip.
Making use of equations (80), (86), (90), (92), and (93) the

stress may be written in the form:
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1
IITa
Tyz N JZ ! Re 8 + in @
T vcos us sin

LE
TXZ = -T# Re (9“‘)
V2Tr Jcos & + u_ sin R}

where it 1s necessarily implied that near the crack tip

K A A - A2
IIIaJ hu 55 45
A<= (95)

‘B

The anisotropic stress intensity factor, K

IIIa® 1S defined so

that 1t is also indentical to its isotropic counterpart, KIII’
for all boundary value problems of pure shear, For example the

configuration in figure 5 the result is

Ki11a = Kpyzr = 7 /72 (96)

upon constructing the solution and comparing the result with

equation (7).

Consequently, it has been shown that, for the general
homogeneous anisotropic case the crack tip stress fields and
thelr intensity factors, the complete analogy with the

isotropic case is preserved, By Jjudicious definition of the
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anisotropic stress intensity factors, they are identical to
those for the isotropic case, The resulting stress field
equations (81) and (94), when superimposed* give the most
general state of stress in the neighborhood of a crack tip

in an anisotropic body with any configuration or loading,

Perhaps most important of all is the fact that like the
isotropic case, the l/{?‘singularity appears in the stress
field equations (81) and (94), This fact implies that
fracture size effects for homogeneous anisotropic media will

be identical to the isotropic case,

However, for non-homogeneous anisotropy, such as polar
orthotropy, discussed by Williams [79], singularities other
than the l/J;‘type may appear causing different size effects

than the isotropic case,

Cracks in Linear Visco-Elastic Media

The deformation of cracks in plane viscous extension has
been studied by Berg [84, 85]., He has shown that in a linear

viscous sheet elliptical holes (including the

¥ Components of stress eliminated from the stress-strain laws
should be reintroduced. They are derivable directly from the
listed components in equations (81) and (94) and equations (71),
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limiting cases of cracks and circles) always deform into other
ellipses for the cases where additional separation is not taking
place. The exclusion of separation means that adjacent points

on the contour of the hole are remaining adjacent., This
assumption may be somewhat restrictive, but it permits the
important conclusion of ellipses deforming into ellipses, which
in turn allows the use of increments of infinitesimal deformation

analysis to provide a stress analysis of this class of problems,

Therefore for stationary cracks Berg has shown that the
treatment by Sih [86] of stress fields near sharp crack tips
for arbitrary linear viscoelasticity is in fact pertinent even
though "blunting" of the crack tip takes place. Sih has shown
that the crack tip stress flelds are as given in equations (1),
(2), and (3) where the stress intensity factors are functions

of time; i.e.

K¢ = KI(t)
Kip = Ki7(t) (97)
Krrr = ¥rpz(t)

These stress intensity factors may be regarded as representing
the time history of intensity of a crack tip stress field of

constant special distribution.
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Treatment of problems of moving (extending) cracks in
viscoelastic medla is currently unknown. However, they are
obviously pertinent to formulating the condition instability
of cracks in viscoelastic media where slow growth preceedes

sudden failure,

On the other hand the fact that equations (1), (2), and
(3) have been shown to apply to any crack in a linear visco-
elastic body, leads to the conclusion that slight amounts of
viscous action may cause time effects but size effect will be
identical to the elastic case, Consequently viscous "strain
rate effects" in studles of fracture; see for example [87, 88
and 89], may be based on the usual elastic stress analysis,

i.e. equations (1), (2), and (3), etc.

Some Special Cases on Non-Homogeneous Media with Cracks

The general problem of non-homogeneous media with cracks
has as yet not been attacked, However, some speclal cases

of practical interest have been treated.

The problem of two semi-infinite half planes of
different material bonded (or welded) together along a line
(or plane) containing a crack has received the most attention

[90, 91, 92, and 93]. The applications of these analyses
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include faults in laminations in rock or other materlals,
cracks formed at steps in the thickness of plates in extension
and/or bending; stresses in glued joints and bond cracks in

composite materials,

The stress fields [90, 91] for crack tips along such bond
lines take the form:
K

o -
13 27r

fij (e, log r) (98)
where the terms of the type "log r" are shown [91] to be of
little influence on the stress fields. Consequently, the 1/
type of singularity is the controlling factor in the stress
fleld, Therefore, again the dimensional character of K 1is

preserved and fracture size effects will be identical to the

homogeneous case,

However, Zak [94] observed that for a crack perpendicular
to and reaching an interface between two materials, the
coefficient ;M , of the stress singularity, r- , will be other
than 1/2, If the new material belng entered by the crack has
a lower modulus of elasticity then m will be greater than 1/2
and vice versa, This seems to indicate a tendency to promote

the entering of cracks in hard materials into softer ones due

to the increased severity of the type of singularity.
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Another implication here 1s that size effects in
ftransmitting fracture from the harder phases of composities
materials to a softer matrix will be different than the case
of cracks in homogeneous materials, (More specifically the
stress required for failure will depend inversely upon the

size of the hard phase grains to 'chem-tz'Il power,

Inertial Effects on the Stress Field of a Moving Crack

Long before many solutions to elasto-statlic crack
problems were avallable, Yoffe [95] presented the steady state
solution to a crack of constant length, 2a, moving through
plate subjected to uniform tension,T. Moreover, she noted
that the extending crack tip possessed a stress field of the
form,

oyma

013 = —_—gij (O. C. E, Vi, Y) (99)

ﬂ2ﬂr’

where o \na can be recongized as the stress-intensity-factor,
C is the crack velocity and y is the mass density of the
material, Notice that for all values of the crack velocity
the 1/\r singularity is preserved, McClintock [96] obtained
similar results for steady state problems of the mode III
variety, pure shear., Both note that gij is virtually the
same as the static case, equations (1), up to crack speeds,

C, of over O.,4 of the shear wave veloclity, C_., where

2
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c, = : (100)

2

2(1+v)y

However, at some velocity C in the neighborhood of 0.5 02,
the location of the maximum in 8 - direction stresses changes
from @ = 0° to an angle of about 8 = 60° to the crack tip and
the distribution of stresses, By 3 in general becomes quite
different than the static case. The highest triaxiality of
stresses near the crack tip shifts from directly ahead of the
crack to about @ = 60° which is most easily observed from the
calculations of Baker [97]. Other authors [98, 99, 100] have

reemphasized these observations, including the transient

states [97]1.

Experimental photoelastic studies [101] confirm these
results and observations of crack branching at velocities near

0.5 C2 add further evidence,

In addition Mott [102] and Roberts [103] studied the
acceleration of a crack through dimensional considerations

and obtained results tentatively in agreement with those above,

Most important in this discussion of dynamic effects 1s
that the stress fields, equation (99), are preserved in a
form nearly identical to the elastic stress up to very high
velocities, i.,e, C*0.5 C,. Moreover, the 1/\f'singularity
appears for all velocities so that fracture size effects are

virtually unchanged.
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. Energy Rate Analysis of Crack Extension

Griffith [1] in his original analysis of fracture and
later Irwin [104] and Orowan [105] discussed the equilibrium
and stability of cracks from an energy rate view point,
Subsequently, Irwin [106, 4, 5] provided a more detailed study
of the energy rate analysis and its relationship to the crack
tip stress field approach. The detalls were further generalized
and clarified by other authors [44, 107, 108]. The results of
these works prove the equivalence of the energy rate and stress
intensity factor approaches. Application to "compliance
calibration" (i.,e. experimental determination of energy rates)
of test configurations 1s an additional benefit, This discussion

will proceed to cover the essential features energy considerations,

An elastic body subjected to loads and containing an
extending crack provides an energy rate (i.e, per unit of new
crack areagenerated))ﬁ, available for the crack extension
process, Refering to figure 24, the available energy for an
increment of crack extension, dA, is provided from work done by
the force,PdA , and the release, - dV,in the total strain

energy, V, stored in the body [106]. Consequently,

dA  av
B 2P = e - (101)
dA  dA
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the displacements of a linear elastic body are related to the

load by
A = AP (102)

where A 1s the compliance (i.e. inverse spring constant),

which depends upon the configuration including the crack size A,

The strain energy in the body is work done in loading, i.e.

PA P2
2 2

from equations (102) and (103) and using the rule of

differentiation,

o] ] dP ]
e (104)
dA 3A dA 3P

equation (10l1) becomes

P2 3
YH=z=—= — (105)
2  2A

terms involving 4P cancel in equation (105), Therefore the
available energy rate,ib, for infinitesimal crack extension is
independent of the type of load application, e.g. fixed grips,
constant forces, or intermediate cases. This result applies for
an unlimited number of forces on the body [44] and for mixed

types of load application [107].
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Equation (105) is useful for the experimental determination
of energy rates of test configurations., This 1is accomplished
through measurement of the compliance,), as a function of crack
size, A, in order to compute the derivative in equation (105),
Though this so called "compliance calibration" method is
straight forward in principal, the derivative depends on small
changes in A, which 1n practice require very accurate

measurement techniques,

The Equivalence of Energy Rate and Stress Intensity Factor

Approaches

In the previous sectlon 1t was noticed that the energy
rate,éi is independent of the type of load application. Hence,
for convenience in the discussion to follow the "fixed grip"
situation may be employed with no loss in generality of

results,

If an elastic body is loaded and the grips (load point
displacements) are then fixed, the straln energy change, EX y 1is
the only contribution to,}b; see equation (10l1), Under this
condition the work required to close a small segment of the
crack,a, as shown in figure 25, from the opened position, (a),
to the closed position, (b), is identical to the change in the
strain energy. The work can be computed as the crack surface
tractions required to close the crack times their closing

displacements times one half, (since the displacements will be
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proportional to the tractions). The tractions required are the
stresses on the prospective crack surface with the tip at
x = 0 as in figure 25 (b). The displacements are the crack

surface displacements of corresponding points in figure 25(a),

Therefore, as originally propotsed by Irwin [4, 5, 7], the

energy rate,.d, can be obtained from these considerations in

the form
dav 1lim 2 « OuyV Ty x4 T, W
A) = ==| fixed grips = - ( Iy X, YE ) dx (106)
dA a+0 a © 2 2 2

The stresses 0y, Tyx and Tyy may be obtained from the crack tip
stress field equations, such as equations (1), (2) and (3)

with r = x and 8 = 0, The corresponding displacements are

also those of the crack tip field equations but with r =a-x and
e =T,

For the isotropic case the result of these substitutions
and performance of the integration in equation (106) leads to

(for plane strain):

1-v 1-v 1
2G 2G 2G

The terms on the right hand side of equation (107) indicate
that the energy rate contribution of each mode of crack tip

stress field may be considered separately. Since E = 2(1+V)G,
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the separate contributions are (for plane strain):

2
A = (-7 KI2
E

(1-v2)

RS

2
K; (108)

1+v 5
/@ III -p-:- K111

where

NS

ﬁz +411 ""gIII (109)

Equations (108) and (109) also may be adopted to the case of
plane stress by appropriately discarding the (1-v2) in the first

two of equations (108),

As a consequence of equations (108) and (109) the direct
relationship between energy rates and stress intensity factors

has been illustrated,

Equation (106) can also be used to determine the relationships
between energy rates and stress intensity factors for other
elastic media. For example, the relationships for anisotropic
media can be obtained by using the appropriate stress fields,
equations (81) and (94), and corresponding displacements in
(106), Table VI provides the modified elastic coefficients for
the equivalent of equations (108) and (109) for orthotropic

[32] and general anisotropic [33] media.
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Mode Isotropic[5]
(1-v2)
I
E
(1-v?)
II
E
(1+v)
I1I
E

Table VI

/@i = CKi2

(Values of ¢ given below for the case of plane strain)

Orthotropic [32]

(A =By e=A,s= 0)

’AIIAZZ. Ay . ChA,*Ag
2 All 2A11
Ay | Ay . 2A A,
2 All 2A11
1

ZdAquss

1/2

1/2

Anisotroplc

1

2 Im Ca; (uy*uy)]
2]

1 LE;uAss‘Aus

2

Ayy Ass

However, since cracks normally do not extending in a

planar fashion [57] with K

somewhat of academic interest.

fully understood,
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present in generally anisotropic media, these relationships are
It 1s sufficient to have shown
the equivalence of the energy rate and stress intensity factor
approaches, in order that the direct relationship between the

Griffith theory and current theories of fracture mechanics be



Other Equivalent Methods of Stress Analysis of Cracks and Notches

Several other methods of stress analysis of cracks and
notches for incorporation intec failure criteria have been
proposed, The most notable in the recent literature are those
developed by Neuber [10, 109], Kuhn [71, 110], and Barenblatt
[23]. TIdentical to the elastic field approach, each of these
methods uses an elastic stress analysis to determine the general
character of redistribution of force tranémission around cracks.
In addition it 1is important to note that eéch of these analyses
draws attentlon to a phenomena at the crack tip which is

regarded as that which precipitates failure,

More specifically, these phenomena are: developing a
"plastic particle" of critical size, developing the"ultimate
stress" at a specific radius from the crack tip, and developing
stresses approaching the "cohesive bond forces" ahead of a érack,
respectively., Now, since each of these phenomena occur imbedded
within the elastic crack tip stress field,their occurance will
always correspond to having that stress field reach a critical
value, As a consequence these and any other methods which draw
attention to specific critical phenomena at a crack tip,
which proceed to use an essentially elastic stress analysis,
will lead to a failure theory equivalent to the current fracture

mechanics concept of critical values of stress-intensity-factors,
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Even though these alternative methods may be regarded as
Just as true, correct and, useful in a practical sense, the
attention that each draws to a specific phenomena within the
crack tip stress field embodles an assumption which is
unnecessarily restrictive in formulating a failure criteria,
The strength and generality of "fracture mechanics" as based
on the stress field approach is in part due to the absence of

such an assumption,

On the other hand this does not mean that the phenomena
which do in fact occur within the stress fields near crack tips
should be disregarded, Attention to the details of the processes
by which materials resist cracking will undoubtedly lead to
development of superior materials., Each of the alternative
"theories of fracture" mentioned above (and others) does in fact
draw attention to a phenomena which may be a key feature in the
fracture process. Therefore their high worth in conjunction with

and complimentary to the methods of "fracture mechanics" 1is clear,
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.Limitations of the Crack Tip Stress Field Analyses

In this paper results of linear elastic stress analyses of
cracked bodies have been presented for a typical variety of
problems which have already been treated., The determination
stress-intensity-factors for any particular problem can with
time be accomplished, Therefore the elastic stress analysis

is not in itself a real limitation fracture mechanics.

However, the accomplishment of a stress analysis does
represent a delay in the application of fracture mechanics to
configurations with cracks which have not yet been treated.
Moreover, the accuracy of known solutions for stress-intensity-
factors represents a temporary limitation on the accuracy of
immediate applications. Usually, this limitation is far 1less
severe than others, such as variability of materials, in
practical applications.

Conséquently, the elastic stress analyses itself may be regarded
as "exact" and the real limitations of fracture mechanics come
only in its application to situations where non-linearity of
material behavior at the crack tip (or elsewhere) disrupts the

gross features of the stress distribution.

A certain amount of nonlinear behavior such as plasticity
can be tolerated within the crack tip stress field without

grossly effecting the field outside the nonlinear region,
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‘Moreover, the disturbances, 1f embedded within identical fields,
will themselves be identical and hence self-compensating in
comparisons of fracture strengths, Therefore it is important

to resolve the relative sizes of zones of non-linearity which
can be tolerated within the crack tip stress fields., This size
is of course related to the relative size in which the field

equations, such as equations (1), apply.

For the configuration shown in figure 3, the approximate
stress, Oy ahead of the crack, obtained by substituting

equation (4) into (1) and setting 8 = 0, is:

if?

o = (109)
y approx. &5;

The exact stress can be most easily determined by the
Westergaard stress function technique, see Appendix I, and 1s:

g(a+r)

(] 2 E———————
y exact dgz;:;?

where in equations (109) and (110), r is the distance ahead of

(110)

the crack tip along the crack lilne,

Now, taking the ratio of the exact to the approximate

stresses gives:

‘ T
g approx _ 1+2 T (111)
9y exact (1+2)
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In a similar fashion this ratio may also be computed for

the configuration shown in Figure 23 and is:

m = (1+3) |1+% (112)
oy exact a Za
The types of loading in these two configurations, Figure 3 and
23, are opposite extremes, yet equations (111) and (112) show
similar deviations of the approximate stresses from the exact
at like values of r/a. Therefore if the relative tolerable
size (compared to crack size, a) of zone of nonlinearity can be

established for one configuration it is bound to be applicable

to others.

Recent experimental evidence [75] indicates the validity
of the elastic stress field approach up to stress levels o of
0.8 of the yield strength, Oyps for the configuration shown in
Figure 3. For this configuration the width,w, of the zone of

plasticity is predicted to be [78]:

(=2—)° a (113)
Y.Do

€
L
-

Substituting the upper limit of stress, o = 0,8 5y.p. »
mentioned above, the relative size w/a or r/a for reasonable
accuracy is about 0.3 from equation (113). For this value of

r/a, equation (111) predicts a deviation of actual stresses from
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‘the fleld equations of about 20%. Thus the zone of nonlinearity
at a crack tip may be fairly sizable, i.e. of the order of 0.3
of the crack length (and other planar dimensions such as net
section width), without grossly disturbing the usefulness of

the elastic stress field approach. However, a more extensive
evaluation of this limitation should be the subject of further

research,

In addition to non-linearity in the region of the crack tip
consideration of other conditions, such as anisotropic and
viscous effects, having cracks in the bond line between
dissimllar materials, thermal stresses, couple stresses,
inertial effects of moving cracks, as well as considering all
three modes of crack tip stress fields, has led to positive
results. The conclusion 1s that the current techniques of
"fracture mechanics" may be extended to all of these areas,
since similar types of crack tip stress fields exist for them
and the stress-intensity-factor methods of assessing failure
should apply equally well. At any rate this conclusion should
give full confidence that slight amounts of these effects do
not invalidate the useful application of the concepts of

fracture mechanics.

As a consequence of the aSde remarks, it 1s observed that
the only real limitation of elastic stress analysis of

commences with the advent of sizable zones of non-linearity
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1.e. plasticity, at the crack tip. The current hope for
extension of the applicability of "fracture mechanics" to such
situations lies in developing a full analysis based "the
theory of plasticity". This topic is a subject left for

other discussions.

- 79 =



.Acknowledgement

The authors gratefully acknowledge the support of this
work under the NASA grant NsG 410 to the Lehigh University
Institute of Research. Portions of the analysis based on
previous work were supported under grants from the National

Science Foundation, G24145, and the Boeing Company.,

The many suggestions and data provided by Dr, W.F. Brown,
Dr, O.L. Bowie and Dr. G.R. Irwin were most helpful in preparation
to this paper. Appreciation is also expressed for aid in
collecting information for Appendix II given by Mr, M., Kassir

of the Department of Mechanics of Lehigh University.

- 80 -



References:

1) Griffith, A.A. "The Phenomena of Rupture and Flow in
Solids" the Philosophical Transactions of the Royal
Society of London, Vol., 221, 1920,

2) Inglis, C.E, "Stresses in a Plate Due to the Presence ‘of
Cracks and Sharp Corners" Proceedings of the Institute of
Naval Architects, Vol. 60, 1913,

3) Sneddon, I.N, "The Distribution of Stress in the
Neighborhood of a Crack in an Elastic Solid", Proceedings
of the Royal Society of London, Vol, A-187, 1946,

4) Irwin, G.R. "Analysis of Stresses and Strains near the
End of a Crack Traversing a Plate", the Journal of Applied
Mechanics, A.S.M.E., June 1957,

5) Irwin, G.R. "Fracture" Handbuch der Physik, Vol. VI,
Springer, 1958,

6) Williams, M,L. "On the Stress Distribution at the Base of
a Stationary Crack", Journal of Applied Mechanics, A.S.M,E.,
Mareh 1957,

7) Irwin, G.R. "Fracture Mechanics", Structural Mechanics,
Pergamon Press, 1960,

8) Westergaard, H.M, "Bearing Pressures and Cracks", Journal
of Applied Mechanics, A,S.M.E., June 1939,

9) Paris, P,C., "Stress-Intensity-Factors by Dimensional
Anglysis", Lehigh University, Institute of Research Report,
1961,

10) Neuber, H, "Kerbspannungslehre", Springer, 1937 and 1958
(English translation avallable from Edwards Bros.,
Ann Arbor, Mich,)

11) Peterson, R.E, Stress Concentration Design Factors, John
Wiley & Sons, 1953,

12) Savin, G. Stress Concentration Around Holes, Pergamon
Press, 1967,

13) Isida, M. "The Effect of Longitudinal Stiffeners in a Cracked
Plate under Tension", Proc., of the U4th U.S. Cong. of Appl.
Mech., 1962,

- 81 -



N

1W)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

Kobayashi, A.S., and R.G. Forman "On the Axial Rigidity
of a Perforated Strip and the Straln Energy Release
Rate in a Centrally Notched Strip Subjected to Uniaxial
Tension" A.S.M.E,preprint No, 63-WA-29 (to be published
in The Journal of Basic Engineering).

Kobayashi, A.S.; R.B., Cherepy, and W.C, Kinsel "A Numerical
Procedure for Estimating the Stress Intensity Factor of a
Crack in a Finite Plate" A.S.M.,E., preprint No, 63-WA-24
(to be published in The Journal of Basic Engineering).

Bowie, O.L, "Rectangular Tensile Sheet with Symmetric Edge
Cracks" A.S.M,E. paper No. 64-APM-3 (to be published in The
Journal of Applied Mechanics).

See also: Bowie, O,L. and Neal, D,M. "Single Edge Cracks
in Rectangular Tensile Sheet" Tech, rep. AMRA TR 64-13,
Watertown Arsenzl, May 1964,

Muskhelishvili, N.I. Some Basic Problems of Mathematical
Theory of Elasticity, 1933, kngllish translation,
. Noordho an ompany, 1953,

Sih, G., P, Paris and F. Erdogan "Crack Tip Stress
Intensity Factors for Plane Extension and Plate Bending
Problems", Journal of Applied Mechaniecs, A.S.M,E.,

June 1962,

Sokolnikoff, I.S. Mathematical Theory of Elasticity,
McGraw-Hill Book Company, 1956,

Sanders, J,L,, Jr., "On the Griffith-Irwin Fracture Theory",
Journal of Applied Mechanics, A.S.M.E., 1960,

Erdogan, F.E, "On the Stress Distribution in Plates with
Colinear Cuts under Arbitrary Loads", proceedings of the
bth U.S. National Congress of Applied Mechanics, 1962,

Sih, G. "Application of Muskhelishvili's Method to
Fracture Mechanics", transactions of The Chinese
Association for Advanced Studies, November 1962,

Barenblatt, G.I, "Mathematical Theory of Equilibrium
Cracks in Brittle Fracture", Advances in Applied Mechanics,
VII, Academic Press, 1962,

Sih, G, "On Crack Tip Stress-Intensity-Factors for
Cylindrical Bars under Torsion", The Journal of The
Aerospace Sciences, October 1962,

- 82 -



25) Sih, G. "The Flexural Stress Distribution near a Sharp
Crack", Journal of A,I,A,A,, February 1963.

26) Sih, G. "Strength of Stress Singularities at Crack Tips
for Flexural and Torsional Problems", Journal of Applied
Mechanics, A.S.M.E., September 1963,

27) Sadowsky, M.A. and Sternberg, E.G. "Stress Concentration
Around a Triaxial Ellipsoidal Cavity", Journal of Applied
Mechanics, Trans, of A.,S.M.E., June 1949,

28) Green, A.E, and I.N, Sneddon "The Stress Distribution in
the Neighborhood of a Flat Elliptical Crack in an Elastic
Solid", Proceedings of The Cambridge Philosophical
Society, Vol. 46, 1950,

29) Irwin, G.R. "The Crack Extension Force for a Part through
Crack in a Plate", Journal of Applied Mechanics, A.S.M.E.,
December 1962,

30) Wigglesworth, L.A. "Stress Distribution in a Notched Plate",
Mathematika, Vol, U, 1957,

31) Irwin, G.R. "The Crack Extension Force for a Crack at a
Free Surface Boundary", N,R.L. Report No. 5120, 1958,

32) Irwin, G.R. "Analytical Aspects of Crack Stress Field
Problems", Univ, of Illinois, T, & A.M. Report No. 213,
March 1962,

33) Sih, G., - unpublished results

34) Isida, M, "On the Tension of a Strip with a Central
Elliptical Hole", Trans. Japan Soc. of Mech, Engr.,
Vol., 21, No. 107, 1955.

35) Isida, M. "On the In-Plane Bending of a Strip with a
Central Elliptical Hole", Trans. of Japan Soc. of Mech.
Engrs., Vol. 22, No. 123, 1956,

36) Isida, M, "On the Tension of a Semi-Infinite Plate with
an Elliptical Hole", Trans, of Japan Soc. of Mech, Engrs.,
Vol, 22, No. 123, 1956,

37) Bueckner, H.,F, - Internal Reports of the General Electric
Company, Schenectady, N. Y,

- 83 -



38)

39)

40)

41)

42)

43)

4h)

45)

46)

K7)

48)

49)

Bueckner, H,F, - "Some Stress Singularities and .their
Computatlon by Means of Integral Equations", Boundary

Value Problems in Differential Equations (R.E, Langer Edit.),
University of Wilsconsin, 1960,

Winne, D.H. and B.M. Wundt "Application of the Griffith-
Irwin Theory of Crack Propagation to Bursting Behavior of
Disks", Transactions of A,3.M.E,, Vol, 80, No. 8,
November 1958,

Bowie, O.L, "Analysis of an Infinite Plate Containing Radial
Cracks Originating from the Boundary of an Internal

Circular Hole", Journal of Mathematlics and Physics, Vol. 35,
No. 1, 1956,

Gross, B,; J.E. Scrawley and W.F, Brown, Jr., "Stress
Intensity Factors for a Single Edge Notched Tension
Specimen by Boundary Collocatlion of a Stress Function"
N.A.S.A,, Lewls Research Center, unpublished report.

Romualdi, J.P,3; J.T, Frasier and G.R. Irwin "Crack
Extension Force near a Riveted Stringer", N,R.L. Report
No, 4956, May 1957.

Romualdi, J.P, and P.H, Sanders "Fracture Arrest by
Riveted Stiffeners", Proc. of the Uth Midwest Conference
on Solid Mechanics, Univ, of Texas Press, 1959/1960.

Paris, P,C, "The Mechanics of Fracture Propagation and
Solutions to Fracture Arrestor Problems", Boeing Document
No. D2-2195, 1957,

Paris, P,C. "A Short Course in Fracture Mechanics",
University of Washington, 1960,

Sanders, J.L., Jr. "Effect of a Stringer on the Stress
Concentration Factor due to a Crack in a Thin Sheet",
N,A,S,A,, Tech, Rep. R-13, 1959,

Isida, M, "Stress Concentration due to a Central
Transverse Crack in a Strip Reinforced on Either Side",
Journ, of Japan Society of Aero-Space Sciences, Vol. 10,
No, 100, 1962.

Grelf, R, and J,L. Sanders, Jr. "The Effect of a Stringer
on the Stress in a Cracked Sheet", Harvard University,
June 1963 (to be published in the Journal of Applied
Mechanics).,

Sanders, J.L,, Jr., -~ Private Communication

- 84 -



50)
51)
52)

53)

54)

55)

56)

57)
58)
59)

60)

61)

Terry, T. "Analysis of a Reinforced Infinite Plate
Containing a Single Crack", Ph,D., dissertation,
Lehigh University, September 1963,

Sihy, G, "On the Singular Character of Thermal-Stresses
Near a Crack Tip", Journal of Applied Mechanics, A,S.M.E.,
Vol, 29, 1962,

Florence, A,L, and J.N, Goodier "Thermal stress due to
Disturbance of Uniform Heat Flow by an Ovaloid Hole",
Journal of Applied Mechanies, A,S.M.E., Vol, 27, 1960

Williams, M,L, "Surface Stress Singularities Resulting from
Various Boundary Conditions in Angular Corners of Plates
under Bending", Proc. of the First U.S. Nat. Congress of
Appl. Mech,, June 1951,

Williams, M.L. and R,H., Owens "Stress Singularities in
Angular Corners of Plates having Linear Flexural
Rigidities for Various Boundary Conditions", Proc. of
the Second U.S. Nat, Congress of Appl. Mech,, June 1954,

Williams, M.L. "The Bendlng Stress Distribution at the
Base of a Stationary Crack", Journ., of Appl. Mech,,
A.S,;M,E,, March 1961,

Erdogan, F.,, 0. Tuncel and P, Paris "An Experimental
Investigation of the Crack Tip Stress Intensity Factors
in Plates under Cylindrical Bending", Journ. of Basiec
Eng., A.S.M.,E,, March 1963,

Erdogan, F., and G, Sih "On Crack Extension in Plates
under Plane Loading and Transverse Shear", The Journ,
of Basic Engin., A.S.M,E., Dec, 1963,

Knowles, J.K, and N.-M. Wang "On the Bending of an
Elastic Plate Containing a Crack", Galeit, SM 60-11,
July 1960,

Reissner, E, "The Effect of Transverse Shear Deformation
on the Bending of Elastic Plates", Journ. of Applied Mech.,
A.S.M.E., Vol, 12, 1945,

Williams, M,L, (published discussion of reference 56),
(see also reference 80),

Roberts, R. - unpublished test results to be incorporated
into a Ph.D, dissertation, Lehigh University.

- 85 -



62)

63)

64)

65)
66)
67)
68)

69)

70)
71)

72)
73)

4)

Sth, G. and D, Setzer (discussion of reference 63),
The Journal of Applied Mechanics, A,3.M.E., June 1964,

Folias, E.S, and M.L, Williams "The Bending Stress in a
Cracked Plate on an Elastic Foundation", The Journal of
Applied Mechanies, A.S.M.E.,, June 1963,

Fo%ias, E.S. - Ph,D, dilssertation at Calif. Inst. of Tech.,
1963,

Ang, D.D.,, E.,S. Folias and M,L. Williams "The Effect of
Initial Spherical Curvature on the Stresses near a Crack
Point", Galcit report, SM 62-4, May 1962,

Reissner, E, "Stress and Displacements of Shallow
Spherical Shells", Journ., of Math. and Physics, Vol. 25,
1946,

Sechler, E.E, and M,L, Williams "The Critical Crack Length
in Pressurized Cylinders", Galcit 96, final report,
Sept, 1959,

Williams, M.L. "Some Observations regarding the Stress
Field near the Point of a Crack", Proceedings of the Crack
Propagation Conference, (Cranfield, England), Sept. 1961,

Bluhm, J,I. and Mardirosian, M.M, "Fracture Arrest
Capabillities of Annularly Reinforced Cylindrical Pressure
Vessels", Experimental Mechanics, Vol, 3, Nos. 3 and 12,
March and December 1963,

Peters, R.W. and Kuhn, P, "Bursting Strength of
Unstiffened Pressure Cylinders with S1lits", N.,A.S.A.,
TN 3993, April 1956,

Kuhn, P, "The Prediction of Notch and Crack Strength under
Static and Fatigue Loading", presented at the SAE-ASME
Meeting, New York, April 1984,

Cosserat, Z., and F, "Théorie des Corps Déformables",
A, Hermann et Fils, Paris, 1909.

Mindlin, R.D, "Influence of Couple Stresses on Stress
Concentrations", Experimental Mechanics, Vol, 3, 1963,

Setzer, D, "An Elasto-Static Couple Stress Problem:

Extension of a Elastic Body containing a Finite Crack",
Ph,D, dissertation, Lehigh University, Dec., 1963,

- 86 -



75) Anon, "Screening Tests for High-Strength Alloys sing
Sharply Notched Cylindrical Specimens", 4th report of
Special A,S,T.M. Committee, Materlals Research and
Standards, Vol, 2, No. 3, March 1962, (see also other
reports Jan, 1960, Feb. 1960, May 1961, Nov. 1961 and
March 1964),

76) Sneddon, I,N. "Crack Problems in Mathematical Theory of
Elasticity", North Carolina State College, Report
No., ERD-126/1, May 1961.

77) Bueckner, H, - Private Communication

78) Irwin, G.R. and McClintock, F,A, "Plastlcity Modifications
to Crack Stress Analysis", Proceedingsof the A.S.T.M,
Symposium on Fracture Testing, June 1964,

79) Chapkis, R,L. and M.L, Willlams "Stress Singularities for
a Sharp-Notched Polarly Orthotropic Plate", Proceedings of
the Third U,S. Congress of Applied Mechaniecs, 1958,

80) Ang, D.,D., and M,L. Williams "Combined Stresses in an
Orthotropic Plate having a finite Crack", Journal of
Applied Mechanics, A.S.M.E., Sept. 1961,

81) Willmore, T.J. "The Distribution of Stress in the
Neighborhood of a Crack", Quarterly Journal of Mechanics
and Applied Mathematies, Vol. II, Part I, 1949.

82) Sih, G,C, and P.C, Paris "The Stress Distribution and
Intensity Factors for a Crack Tip in an Anisotropic
Plate Subjected to Extension", Lehigh University,
Institute of Research Report, October 1961,

83) Lekhnitzki, S.G. Anisotropic Plates, 1947, translated by
E. Stowell for A,I.5.l., ﬁew York, 1956. (See alternatively
a newer translation available through Holden-Day Book Co.,
San Francisco),

84) Berg, C.A., "The Influence of Viscous Deformation on
Brittle Fracture", D.Sc. dissertation at M,I.T., June 1962,

85) Berg, C.A. "The Motion of Cracks in Plane Viscous

Deformation", Proceedings of the 4th U.S. Nat. Congress
of Applied Mechanics, 1962,

- 87 -




. 86)

87)

88)

89)

90)

91)

92)

93)

94)

95)

96)

Sih, G.C. "Viscoelastic Stress Distribution Near the
End of a Stationary Crack", Lehigh University, Institute
of Research Report, July 1962,

Krafft, J. and G.R., Irwin "Crack Velocity Considerations",
Proceedings of the A.S.T.M. Symposium on Fracture Testing,
June 1964,

Krafft, J. and A.M. Sullivan "Effects of Speed and
Temperature upon Crack Toughness and Yield Strength in
Mild Steel", A.,S.M. (Trans., Quart.), Vol, 56, March 1963.

Irwin, G.R. "Crack Toughness Testing of Straln Rate
Sensitive Materials" (to be published in The Journal of
Basic Engineering, 1964),

Williams, M.,L. "The Stresses Around a Fault or Crack in
Dissimilar Media", Bul. of Selsmological Soc., of Amer.,
Vol. 49, 1959.

Erdogan, E, "Stress Distribution in a Non-Homogeneous
Elastic Plane with Cracks", Journ. of Appl. Mech., A.S.M,E.,
Vol. 30, June 1963,

Sih, G. and J. Rice "The Bending of Plates of Dissimilar
Materials with Cracks" (to be published in The Journal of
Applied Mechanics, 1964),

See also: Rice, J. and Sih. G. "Plane Problems of Cracks in
Dissimilar Media", Lehigh University, Institute of Research
Report, April 1965 (submitted to The Journal of Applied
Mechanics for publication).

Erdogan, F, and L.,Y. Bahar "On the Stress Distribution in
Bonded Dissimilar Materials with a Circular Cavity"

(to be published in The Journal of Applied Mechanics,
1964-65),

Zak, A.R. and M,L. Williams "Crack Point Stress
Singularities at a Bimaterial Interface", G.A,L, C.I.T,
Report SM 62-1, January 1962,

Yoffe, E. "The Moving Griffith Crack", Philosophical
Magazine, Ser. 7, Vol. 42, 1951.

McClintock, F, and P, Sukhatme "Traveling Cracks in

Elastic Materials under Longitudinal Shear", Journal of
Mech, and Physics of Solids, Vol, 8, 1960.

- 88 -



.97) Baker, B,R. "Dynamic Stresses Created by a Moving Crack",
Journal of Applied Mechanies, A.S.M.E., Vol. 29, 1962,

98) Craggs, J.W. "On the Propagation of a Crack in an
Elastic-Brittle Material", Journal of Mech. and Physics
of Solids, Vol. 8, 1960,

99) Ang, D.D. "Some Radiation Problems in Elastodynamics",
Ph,D., dissertation, C.I.T., 1958,

100) Cotterell, B, "On the Nature of Moving Cracks" (to be
published in The Journal of Applied Mechanics, 1964),
A,S.M.E., Paper No. 63-WA-181.

101) Wells, A.A, and D, Post "The Dynamic Stress Distribution
Surrounding a Running Crack - a Photoelastic Analysis",
N.R.L. Report Nou. 4935, April 1957,

102) Mott, N.F, "Fracture of Metals: Theoretical Considerations",
Engineering, Vol. 165, 1948,

103) Roberts, D.K. and A.A, Wells "The Velocity of Brittle
Fracture", Engineering, Vol. 178, 1954,

104) Irwin, G.R., and Kies, J. "Fracturing and Fracture Dynamcis",
The Welding Journal Research Supplement, February, 1952,
(and earlier work referenced therein).

105) Orowan, E,. "Fundamentals of Brittle Behavior of Metals",
Fatigue and Fracture of Metals, John Wiley & Sons, 1952
{and earller work relerenced therein),

106) Irwin, G.R. "A Critical Energy Rate Analysis of Fracture

Strength", The Welding Journal Research Supplement,
April 1954,

107) Bueckner, H.F, "The Propagation of Cracks and Energy of
Elastic Deformation", Transactions of A.S.M.E.,
August 1958,

108) Sanders, J.L. "On the Griffith-Irwin Fracture Theory",
Journal of Applied Mechanics, Vol. 27, Trans. A.S.M.E.,
Ser, E, Vol, 82, 1960,

109) Neuber, H, see: Irwin, G.R. "Fracture Mechanics"
Structural Mechanics, Pergamon Press, 1960,

110) Kuhn, P, and I.E, Figge "Unified Notch-Strength Analysis
for Wrought Aluminum Alloys", N.A.S.A., T.N. D=-1259, 1962,

- 89 -



.Table of Notation

jalsibII.ébIII

[ ta

K = Ky=1K77
Kr, Kr1, Krrr

Kj,K2,K3,Ky

Crack surface area

Half crack length of internal crack
or crack depth of surface crack

Elastic compliance coefficients for
Hooke's law of plane problems of
anisotropic media

Elastic compliance coefficients for the
general Hooke's law of anisotropic media

Half width of a strip

Constants

Crack velocity

Complex differential operators (K=1,.,..,6)
Round bar diameter

notch diameter

Modulus of elasticity

P-1iQ , force with complex representation
(per unit thickness)

Shear modulus of elasticity
Energy rate available for crack extention

Energy rates associate with each mode of
cracking

depth of a beam or plate
J-l'

Stress intensity factor with complex
representation

Stress intensity factors for each mode
(subscript a indicates anisotropic type)

Stress intensity at various points
on a crack countour
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K K Plate and shell bending and shearing stress
Bs» S
intensity factors

L Half length of a strip
£ A couple stress elastic constant
M Applied bending moment (per unit thickness)
P Force (per unit thickness)
p Crack tip radius
Pis, 94 Anisotroplic elastic constants
R Radius of a curved crack
r Radial coordinate from a crack tip
T Temperature
t Plate thickness (or time)
U,U;,Us Stress functions for anisotropic media
u,v,w Displacement components
\ Strain energy

Z,21,271,2711 Westergard stress functions

2,2, 2, 2 Sucessive derivativesof a Westergaard
stress function
Z,2 complex variables
21y 22, 23 modified complex variables for
anisotropic analysis
a An angle (or closing segment of a crack)
B8 An angle
¥ Mass density
Uxy s ¥yz» Vxz Shear strain components
A Displacement
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2, gb
V2,V

X» Eys €z

15'32

Oij—ox,cy.Oz,

Txy'Tyz.TXZ

Ors%9gsTro

®

¢

¢B

3 ]
Gradient (== + =)
X 3y
Harmonic and biharmonic operators

The bielastic constant of joined half-
planes

Normal strain components
A complex variable (origin at the crack tip)

Modified complex variables for
anisotropic media (origin at the crack tip)

Complex variable in the mapped plane

Angular coordinate measured from the crack plane
An elastic constant for plane stress or strain
Compliance of a linear-elastic body

Elastic constants for anisotropic media
(K=l....’6)

Polsson's ratio

Normal and shear stress (applied at infinity)
Maximum stress at a notch

Net section stress (average)

Rectangular components of stress

Polar components of stress
Airy's stress function

A complex stress function for plane stress
or strain

An elliptic integral
A complex stress function for plate bending

A complex stress function for plane stress or
strain
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Harmonic functions

vy

FC ), g( ), A function of

h( ), k()

Re, Im Real and imaginary parts of complex functions
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fMode I Mode II Mode III

Pipure 1 -~ The Basic Modes of Crack
Surface Displacements

leading edge
of the crack

Figure 2 - Coordinates Measured from
the Leading Edge of a Crack and
the Stress Comnonents in the
Crack Tip Stress Field
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ire 3 - An Infinite Cracked Sheet
with Uniform Normal 5tress
at Infinity

Fipgure 4 -« An Infinite Cracked Sheet
with Uniform In-Plane Shear
at Infinity

Figure 5 - An Infinite Body with a
"Tunnel Crack" subjected to
Out-of-plane Shear at Infinity
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Figure 6 - A Perilodic Array of Cracks
along a Line in a Sheet with Uniform
Stress at Infinity

(z-plane) (n-plane)

Figure 7 - A Concentrated Force
(per Unit Thickness) on the
Surface of a Crack in an

Infinite Sheet
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Figure 8 - A Curved Crack in an Infinite
Sheet Subjected to Uniform Biaxial Tension

Figure 9 - A "Penny-Shaped" (Circular
Disk) Crack in an Infinite Body
Subjected to Uniform Tension
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Figure 10 - An Elliptical Crack in an
Infinite Body Subjected
to Uniform Tension
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Figure 11 - An Edge Crack in a Semi-
Infinite Sheet Subject to Tension

Figure 12 - An Edge Crack in a Semi-
Infinite Body Subjected to Shear
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Figure 13 - A Central Crack in a Strip
Subjected to Tension
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Figure 14 - An Edge Crack in a Strip
Subjected to in Plane Bending
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Figure 15 - Dcuble Symmetric Edge
Cracks in Strip of Finite Length
Subjected to Tension
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Figure 16 - A Single Edge Cracked
Strio Subjected to Tension
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heat flow

Figure 17 - An Insulated Crack
Disturbing Uniform Heat
Flow in a Sheet

Figure 18 - Coordinates Used in a
Cracked Plate which will be
Subjected to Transverse Bending
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Figure 19 - A Through Crack in an
Infinite Plate Subjected to
Uniform Biaxial Bending
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Figure 20 - A Circumferentially
Cracked Round Bar Subjected
to Tension
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Figure 21 - A Semi-Ellintical Surface
Crack in a Plate Subjected to
General Extension
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Figure 22 - Tne Plan View of an
Irregular Crack in an
Infinite Body

Figure 23 - A Crack in an Infinite
Sheet Subjected to Centrally
Applied Wedge Forces
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Figure 24 - A Crack in a Body of
Arbitrary Shape Subjected to a
Load

(a)

Pigure 25 - The Tip of a Crack, (a),
which has been nulled closed, (b),
along a Screment Adjacent to the Tip

e
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APPENDIX I - The Westergaard Method 2£ Stress Analysis of Cracks

Any elementary text on the theory of elasticity gives a
full development of the equations for plane extension. The

equilibrium equations are:

3o T
X . yx 0
ax ay
9T 30
X+ L =0 (114)
ax ay
Txy = Tyx

The strain-displacement relationships and Hooke's law lead to

the comparability equation:

32 32
V2(0,+0y) = (mmmmt =) (g_+0,) = 0 (115)
Xy ax2  ay? Xy

The equilibrium equations (114) are automatically satisfied by
defining an Airy's stress function,$, in terms of its
relationship to the stresses, 1i,e.

328

g = a—————
X ayz
323

cy E R aa

3x2

_32§

Xy (116)

X3y

A-1



Substituting equations (116) into (115) leads to:
v4g = v2(v23) =0 (117)

In order to solve a problem the stress function,®, must
satisfy equation (117) and the boundary conditions of that

problem,
Choosing the stress function,§, to be:
§= ¥, +xb, + ¥y, (118)

it will automatically satisfy equation (117) if the y; are each

harmonic, i.e.
vy, =0 (119)
Define a complex variable, z, by
z = x + 1y (120)

Functions of that complex variable, E(z), and its derivatives,

, a7 az dz
z =  —— s AR S — , Z' = —— (121)
dz dz dz

have harmonic real and imaginary parts, if the function is
analytic, e.g. if: F = Re 2 + 1 Im Z
then: V2(Re Z) = V?(Im Z) = 0 (122)



This is a result of the Cauchy-Riemann conditions, i.e,

3Re Z 3Im Z

= =———— = Re z

ax 3y

3Im 2 3Re 7
- = Im 2z (123)
9X 3y

equations (123) may be used to differentiate these functions
3 through Z.

First Mode

In conformity with equations (118) through (123)

Westergaard [8] defined an Airy's stress function,§, by

§r = Re 2r +y Im 7y (124)

which as a consequence automatically satisfies equilibrium and

compatability, equations (114) and (117).

Using equations (116) and (123) the stresses resulting

from ¢, as defined in equation (124), are

Q
"

Re ZI -y Im Z'I

X
oy = Re Zr +y Im 2'y
T
Xy = -y Re 2'7 (125)

A-3




Now any function, Zy, which 1is analytic in the region except
* for a particular branch cut along a portion of the x-axis will
have the form
g (2z)
I~ =
V(z+b) (z-a)

(126)

This will solve crack problems for a crack along the x-axis
from x=-b to x=a, (y=0), if g(z) is well behaved, since the

stresses, o, and 14y, along that interval are zero, provided

y
that

Im g(x) = 0 (for =b<x<a) (127)
For example if the function

oz

(128)

i1s examined, it solves the problem of a crack at -a<x«<a,
y=0 and leads to boundary conditions of uniform biaxial stress,

0, at infinity, see Figure 3.

Now, reverting to the more general case, equation (126), a
substitution of variable

$=2z - a (129)

leads to

(130)



where from equation (126) and (127), f£(¥) is well behaved for
.small [§], (i.e. near the crack tip at x=a). Moreover, in that
region as [§|> 0, g may be replaced by a real constant or

equation (130) may be written

Ky

= = (131)

7
I11¢€]+0 EEES

Other stress functions, Z for crack problems, such as

Il
equation (16), will also always lead to this form.
Noting that equation (131) may be substituted into equations
(125), and using polar coordinates, i.e.
ia

= re (132)

the crack tip stress field is:
KI o} e 38

cos = [l-sin= sin =]

SN Y 2 2 p)

KI ] 8 38
T, = cos = [1+ sin = sin =]
y oz 2 2 2
K 9 ) 38
Txy = I sin = cos = cos =— (133)

V2"r 2 2 2

where from equation (131)

1im (134)
K = 2138 Z 13
I [38l+0 I



The strain in the y-direction can be written in terms of

displacements and stresses by Hooke's law, or

av Ty

Ay E

For plane strain Hooke's law (ez=0) also leads to

g

Substituting equation (125) and (136) into equation (135)

integrating leads to

1+v

v = = [2(1-v) Im ZI—y Re ZI]

E

 (
= \c +Oz)
E X

z = v(ox+oy)

Similary consideration for e_ gives

1+v

u = = [(1-2v) Re Z
E

X

I

-y Im ZI]

(135)

(136)

and

(137)

(138)

Substitution of equation (131) and (132) into equations (137)

and (138) and noting E

o] IH?'x‘ «Q IHP‘:

= 2G(1l+v) leads to

T e e]
- COS [1-2 +sin?=]
2w 2 2
r s} 28
— 5in = [2-2 —-cos =]
2w 2 2

(for plane strain w = 0 )
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Equations (133), (134), (136) and (139) are the resulting
crack tip stress and displacement fields, i.e., equations (1)

and (13), for the first mode,

Second Mode

Instead of choosing the Airy's stress function as in

equation (124), it is equally permissible to choose the

form,
817 = -y Re Z1p (140)

Repeating all of the operations from equation (124) through
(139) and again making use of equations (11l4) though
(123) leads to:

Q
il

2 Im Zyy + y Re 2!

X IT
oy = =¥ Re Z'II
Txy = Re Z77 -y Im Z'II (141)
and
1+v -
u = —E-[2(1-v) Im Z11*y Re ZII]
1+v -
v = -E—[-(l—2v) Re Z;r-y Im Z11] (142)

and in the neighborhood of a crack tip, i.e. |$|+ O,

vA R (143)
II 1 |e]»0 2nf

A=T7



or
1im 2n ¢ Z

= II
IT 74140

K (144)

In addition, near the crack tip substitution of equation
(143) into (141) and (142) leads to:

-KII 8 e 3@
Og = =mm—= 5in = [2+ CO0S = COS w=]
21r 2 2 2
Krr 8 8 38
O, = e COS = [l= Sin = COS =]
AN Py 2 2 2
Kip o 0 30
Txy = cos = [l- sin = sin =]
2uwr 2 2 2
(145)
and for plane strain
K r 1] ]
= AL (= sin = [2-2v+ cos? =]
G 2n 2 2
KII r 8 e
V = e == COS = [1-2Vv+ sin? =] (146)
G 2 2 2

These results are reflected in equations (2) and (14), for the

second mode,

The first and second modes may be superimposed since

§= 8+ 817 (147)



is a perfectly permissible Airy's stress function in which

case stress and displacement components should simply be

added to each other.

Third Mode

The plane (2-dimensional) problem of pure shear may

be specifled by:

u=0,v=0,w=wlx,y) . (148)

The strain displacement equations and Hooke's law gives

[1117]:

\( oW X2
X2z S amem = e
3xX G
oW Tyz
Xyz = ;; = = (149)

The stress components oy, oy, oz and Txy all vanish so the

equilibrium equations become

arxz aryz

+ = 0 (150)
9X ay

which when combined with equations (149) gives

V2w = 0 (151)



Choosing:

W = % Im 211, (152)
leads to
xz T Im Zrpy
Tyz = Re Z117 (153)

The stress functlon Z;;;, for a crack along the negative

y-axis to the origin, takes the form near the crack tip

K
IIT
Z = (154)
III\Iflw \Z7 5"
Consequently,
1lim
Ko = ]+0 JZﬂﬁ 111 (155)

Moreover, substituting equation (154) into equations (152)
and (153) and using (132) leads to

K 8
R & 2
J21rr| 2
K ]
g = T cos = (156)
J?wr' 2
and
K 2r e
I
W= _EE_ - Sin o (157)
G b 2

These results are reflected in equations (3) and (15) for the
third mode,
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Appendix II - A Handbook of Basic Solutions for Stress-Intensity-

Factors and (Qther Formulas

The results to be presented for stress-intensity-factors
will conform with their definition as implied by equations (1),
(2),(3),(48),(81) and (94)., References which contain further

results and detalls will be listed for the readers convenience,

A selection of solutions for stress-intensity-factors;
in addition to those already listed, will be chosen on the basis
of their generality. Since superposition may be used, i.e.
addition of the stress-intensity-factors for each mode, the
results which lend themselves to generation of other solutions

will be emphasized,

(1) Formulas for determination of stress-intensity-factors from

stress concentrations [33].
Mode I

lim- ®
{;1 omax JE“ (158)

p+0

provided KII=KIII=° and where p is the tip radius
of the notch and %,., is the maximum normal stress adjacent to the

tip. (See equation (9))



Mode II:

HUm 7' opax JEF

| K, = (159)
i IT p*o
provided K;=Ky11=o0 , etc.
Mode III:
———t . 1im. q?ﬂ Tmax {57 ]
p*o

provided Ky=Kyy=o = and where T, .4 1s the

maximum shear stress adjacent to the tip of the notech.

(2) Infinite sheets subjected to in plane loads.

K, =0 sin8 [ 7a’

(161)
K;;=0 sinB éos NETY

_a218
o(n)= o(l-e )a

Un

Ref.:[18] or via equations (33) or by superimposing results of

equations (4) and (6)., (Note that all other cases of uniform
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Loading at infinity or on the crack surface may be derived from

this case by superposition,)

For the right end of the crack:

i | Ll
o2 -lc -1b | ¢ b2 | 1(c=b) p-1
KI = === <8in =« sin = =la=— + [lo=—(+ ( )
2y a a a? a2\ 2\{ma k+l
o(e=b) k=1 12’ -lc -1b c? b2
Ky = () + sin =< sin =« [le== 4+ [l-=—}(162)
2w a k+1 2w a a a2 a2

where K= 3-4y (plane stress)

3=y Ref.: Equations (32)

or [{= == (plane strain) -
14y




For the right end of the crack:

1
K=K -1K_. = (P+1Q)
IV o (1+z){ [Jzo-a

a(P-iGD(Eo-zd)*ai(l+K)M;§

+ -
(Zo~alZo-2

where: Z2, = xo+1y°

-Z—o = xOfiyo

Ref, [21], [22] or via equations 33,
(See also [23]).

a+z, K(a+z ) :
-l+KJ

(163)




At the near ends of two equal colinear cracks

E(k)

" b2 K{E)=—a2
K =U - et
1 a db2-a2

)
- b2 E(k -a2
Kep = 1 ;- - K(k) .. (164)

\’b2-a2

At the far ends:

1 E(k)
K = g b — -
I 7o K kK(k))
E(k)
Kip = T \]'rFt?(_- (165)

kK(k)

where k = rl— 23 is the modulus of the complete elliptic
b2

integrals E(k) and K(k) of the first and second kind, respectively.

Ref. [38], [23], (See also [21] for concentrated forces on the

crack surface.)




o

For an infinite array of cracks at the ends denoted by e:

ne
o \|Ub sin.
K = \ 2b

I

— —

Jcoslg (sine& + sinlC
2b 2b 2b

. —
P Jsingg

Jb sih%%“Cdégg'(sihgg + sin

+

L
‘"C)

KII = 0 . _ (166)

Ref.: G,R, Irwin (unpublished N;R;L; Report), (See also [4]
and-[5],) (Note that this result may be used to evaluate

eccentrically located cracks in pannels,)




For a semi-infinite crack:

P

K - ————

I 2Fc

Q

Kt = (167)
T v

Ref.: Equations (32) or [21]

For two semi-infinite cracks;

At the left crack tip:

p c?-2a2

K. =
I Zﬁ? (c-a)
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Q c2-a2
K =
II  2Jra' (c-a)
At the right crack tip:
P 02-a2
KI =
2yTa  (c+a)

Q \/cz-a2

K =
I 2\ ta' (c+a)

Ref.: [21]

(168)

Stress concentrations for deep hyperbolic notches are [10];

for Pn (force per unit thickness)alone:

J?ﬂ

max (l+

Ghet - a o)
(1+p/a)tan —+ -

Onet

(169)



For V,, alone:

a
“max JE +1
T -1
net +2 2 -JE\
(1 a)’can J; =

Vo
Thet = ;— (170)
a

For Me alone:
a

4o

max =

net  3r[p +<1-R)tan‘1J§1
a a p

3 M,

net = (171)
2 a

Using equations (158) and (159), for the right crack tip:

Pow 2 Mo

Ky = +
Fa | a3/
Vo

Kip = =— (172)
\J"a

Ref. [10], [33], [45]
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For Cracks Emanating from a Circular Hole

)

[ | 2

F(

K =o(Lm

(173)

KII

Two Cracks

One Crack
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‘Ref, ¢

[40]
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For the crack tip at o:

) )1/2
o(7R sin o
K. = cos ; + cos (2B+ga) [sin2 %]
I 2(1+ sin2 g)
3 2 a j a
- cos (28+2a) [cos s - sin 23

[+
- sin (28+-g-a) [sin asin® 2] }

1/2
o(7R sin a) o ( 5 ) [st > a]
K = sin = + sin (2B8+xa sin® -
II  2(1+sin? §> 2 2 e
3 Irees2 2 y 2
+ sin (28+ 5 a)[cos 3 - sin 2]
- cos (28+ % a)[sin asin® g] (174)

Ref.,: [18]
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(3) Some cases of specified displacements in infinite planes

W

!
Y
e

For an infinite rigid wedge of constant thickness:

Eh
K1 = (for plane stress)
Q2w al
KII = 0 (177)

Ref.: [23] (Also see [23] for discussion of other. examples
of wedging)
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The following sequence of events:

1) Stress applied
2) Boundaries clamped

3) Crack introduced

Results in constant energy release rate,AbI, or

o
K I . = m
Kiyp = © (178)

Ref.: [45]

(4) A case of the splitting of rods

ﬂ?
iy —
LS

h A slender rectangular
— member (a>>2c),
L_'av P
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Under wedging:

3/2

{glE h e
K = 2

L g (179)
KII = o]

or under forces:

2.3" Pa
K = e ——
I

c3/2

KII = o (180)

Ref.: [23] (or see J.J. Gilman, Fracture (ed. by Averbach et.al.)
John Wiley & Sons, New York, 1959)

(5) A semi-infinite notch approaching the free edge of a

half-plane L)
Meo

) — T 8) ' (181)

Ref.: [10], [39]
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(6) Axisymmetrical loading of a body with a circular disk crack

For an axisymmetrical normal pressure distribution, p(r),

on both crack surfaces

a
Ky = == ] r o g
\ma © Val-r

K

IT (182)

il
(o]

Ref.

[23] (Note that with superposition this enables treatment

of all cases of axisymmetrical loading)
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_ ¥
I
2=V 52
P [1+(3—=) 2]
K1 = laay3/2 1;“2 =
a [1+ 327
a2
Kip = o) (183)

Ref.: [23] or using equations (182)

(7) Torsion and beam shear of prismatical bars with cracks

3/2 3
(+a)  (l-a) [2(l-a)+{d(mI +J,) ] RT

111 -
02 §272_[2(1-0)2a24a(a+8) 2 2772

(184)



where
b-a
as-—

b

m=1/2 (a + L )
a

(4 \/E'-(l-a)Jo]

a
A= 1/« [(1+<:t)2 Mm g, _ (1-a) ]

a

and
l=0a
B =« [2 - 3/“(1-G)A]
a

Ref.: [26] (Note that several other configurations are treated

in [24], [25], and [26]).

KI = KII = 0 v
T 6.95+6,4Tv, V
III 9 572 ( 1o ) ~372

Ref.: [26], [24]
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(8) Cracks under longitudinal (pure) shear

For the crack tips at

Kr1z

For the crack tips at

Ki1r

For the crack tips at

where

E(k) x J;§1

K(k)

E(k)
=t |—— [1- —] 1 7c
K(k)
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is the modulus of the complete elliptic integrals, E(k) and
K(k) of the first and second kind, respectively.
Ref.: G.C, Sih "Boundary Problems for Longitudinal Shear Cracks"

Proc. of 2nd Conf, on Theor. and Appl., Mech., Pergamon Press, 1964,

(9) The flexure of infinite plates

H

A plate subjected to pure twisting moment (per unit length),
H, at infinity gives:

iHa
¢(n) = -
2D(3+v)n
or
KB = 0
CH
. KS = F \[_17—5' (187)

Ref.: [18], [33]
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Uniform shear (per unit length), Q, at infinity (moments

required for equilibrium shown dotted) gives:

Q a2 2 lav 3
v(n) = [ + () -5
12 D 3+v n
or
KB = 0
8 7Q a3/2
KS = =z (188)
(Results independant of Q')
Ref,: [18]
MI
M
\ D
R A
5
e
For uniform moments at infinity
6M YEEX
K =3
B n (189)
KS = o]
(Results independant of M')

Ref,: [18]
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For a concentrated couple on the crack surface

 3M#* a+b 3H# ( )
K = + 1+v
B hzqwa‘ a=b 2h2 Jna
#

3M¥ 3H a+b
Kg = —3 (1+v) - >
2hcJna' h¢ Jwaja-b (190)
Ref.: [33]
(10) Thermal stress problems
T

R

A plate with uniform temperature supplied on the crack surface

glves
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E e ad
1 (1K) M

. . ,o e (191)

where
M = thermal conductivity
EL= rate of total heat
per unit thickness supplied
to the plate
Ref.: [51]

(Note that this case has significance for high pressure

gas escaping through a crack)

/ L _— All edges clamped

N
A

//

A clamped plate with a thermal gradient through the thickness

gives:
oF h AT {na

B 2(1-v)

K, = o ' (192)

Ref.: ([51]



An infinite body with an circular disk crack perpendicular to

a thermal gradieﬁt glves:

Ea AT a3/2
K =
1I 3 1 (1-v)
K, = Kpyp = o ﬁ (193)

Ref.: A,L., Florence and J.N, Goodler "The Linear Thermoelastic
Problem of Head Flow Disturbed by a Pennyshaped Insulated Crack"
Internat. Journ. of Engin, Sc., Vol, 1, No.4, Dec. 1963.
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